Friction-driven vibro-impact system for percussive-rotary drilling: A numerical study of the system dynamics

Author(s):  
A D L Batako ◽  
P T Piiroinen

Stick—slip-induced vibration in drilling has a detrimental effect on the drilling system and may lead to the failure of the drill string. This study is a further development of a friction-driven vibro-impact system which was investigated previously. The system used the stick—slip properties to generate a vibratory motion of a hammer that collides with the bit. The previous study focused on the influence of the friction on the response of the system without impacts. This paper investigates the full dynamic response of the model including friction and impact. Numerical bifurcation analysis of the system is undertaken to establish various motions and dynamical changes. This study focuses on the system performance outside the stable interval identified in the earlier investigation. The response of the system is illustrated along with the phase portraits.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chafiaa Mendil ◽  
Madjid Kidouche ◽  
Mohamed Zinelabidine Doghmane ◽  
Samir Benammar ◽  
Kong Fah Tee

PurposeThe drill string vibrations can create harmful effects on drilling performance because they generate the stick-slip phenomenon which reduces the quality of drilling and decreases the penetration rate and may affect the robustness of the designed controller. For this reason, it is necessary to carefully test the different rock-bit contact models and analyze their influences on system stability in order to mitigate the vibrations. The purpose of this paper is to investigate the effects of rock-bit interaction on high-frequency stick-slip vibration severity in rotary drilling systems.Design/methodology/approachThe main objective of this study is an overview of the influence of the rock-bit interaction models on the bit dynamics. A total of three models have been considered, and the drilling parameters have been varied in order to study the reliability of the models. Moreover, a comparison between these models has allowed the determination of the most reliable function for stick-slip phenomenon.FindingsThe torsional model with three degrees of freedom has been considered in order to highlight the effectiveness of the comparative study. Based on the obtained results, it has been concluded that the rock-bit interaction model has big influences on the response of the rotary drilling system. Therefore, it is recommended to consider the results of this study in order to design and implement a robust control system to mitigate harmful vibrations; the practical implementation of this model can be advantageous in designing a smart rotary drilling system.Originality/valueMany rock-bit functions have been proposed in the literature, but no study has been dedicated to compare them; this is the main contribution of this study. Moreover, a case study of harmonic torsional vibrations analysis has been carried out in well-A, which is located in an Algerian hydrocarbons field, the indices of vibrations detection are given with their preventions.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Chien-Chih Weng ◽  
Mansour Karkoub ◽  
Wen-Shyong Yu ◽  
Ming-Guo Her ◽  
Hsuan-Yi Chen

Abstract Active and passive control techniques have been devised over the years to mitigate the effect of vibrations on drill-string life with varying degrees of success. Here, it is proposed to design a robust trajectory tracking controller, which ultimately forces the rotary table and the drill-bit to move with the same speed (speed synchronization), hence reducing/eliminating torsional vibrations from the drill pipes. A model of the rotary drilling system, which includes torsional stick-slip, is first developed; then, an integral sliding mode control with time-varying exponent (ISMC-TVE) scheme is developed such that the bit motion tracks that of the rotary table to mitigate the effects of the induced vibrations. The ISMC-TVE is able to control the transient stage of the drill-string system’s response, maintain the system in the sliding state even under abrupt or existing external disturbances, and guarantee asymptotic stability of the rotary drilling system. The Lyapunov stability theorem is used here to analyze the performance of the closed-loop system, and the simulation results showed that the ISMC-TVE law is capable of accurately synchronizing the bit and rotary table speeds.


2004 ◽  
Vol 126 (4) ◽  
pp. 709-720 ◽  
Author(s):  
N. Mihajlovic´ ◽  
A. A. van Veggel ◽  
N. van de Wouw ◽  
H. Nijmeijer

In this paper, we aim for an improved understanding of the causes for torsional vibrations that appear in rotary drilling systems used for the exploration of oil and gas. For this purpose, an experimental drill-string setup is considered. In that system, torsional vibrations with and without stick-slip are observed in steady state. In order to obtain a predictive model, a discontinuous static friction model is proposed. The steady-state behavior of the drill-string system is analyzed both numerically and experimentally. A comparison of numerical and experimental bifurcation diagrams indicates the predictive quality of the model. Moreover, specific friction model characteristics can be linked to the existence of torsional vibrations with and without stick-slip.


Author(s):  
Meng Fu ◽  
Jianghong Li ◽  
Aiqi Zhao ◽  
Yafeng Wu ◽  
Zuhao Chen ◽  
...  

Exploration of oil or gas wells is usually carried out by using drilling system. When the kilometers of drilling system is externally disturbed, the drilling system is prone to undesired stick-slip vibration of the drill-string. The stick-slip vibration of the drill-string belongs to the nonlinear self-excited vibration. In order to study the vibration mechanism, the model for the nonlinear torque on the bit by using Karnopp friction model and the two degrees of freedom model for drilling system were established. The equivalent damping torque formula and the energy variation formula of the drilling system were proposed. The mechanism of the nonlinear self-excited vibration of the drilling system was explained. The simulation results indicated that the stick-slip vibration of the drill-string was caused by the negative value of the equivalent damping force of the drilling system. The equivalent damping torque made the positive work on the system, so that the system absorbed the vibration energy from the outside, which destroyed the stability of the system equilibrium point. The feedback effect in the speed of the drill-bit regulates the system energy to maintain constant vibration without attenuation. In each vibration cycle, the energy input by the system is equal to the energy dissipated by the system. The energy absorbed by the drilling system is mainly converted into the potential energy.


Author(s):  
Chafiaa Mendil ◽  
Madjid Kidouche ◽  
Mohamed Zinelabidine Doghmane

During the drilling process, the drilling system devices can be exposed to several types of phenomena incited by lateral, axial, and torsional vibrations. The latter can lead to severe damages if they are not efficiently controlled and quickly mitigated. This research work is focused on the torsional vibrations, which are stimulated by the nonlinear dynamical interaction between the geological rocks and the drill bit. Wherein, a model with three degrees of freedom was designed to demonstrate the severity of the stick-slip phenomenon as consequence of torsional vibrations. The main objective of this study was to design a robust controller based on hybridizing a conventional PID controller with sliding mode approach in order to mitigate rapidly the torsional vibrations. Moreover, a comparative study between PI, PID and sliding mode controllers allowed us to emphasize the effectiveness of the new hybrid controller and improve the drilling system performances. Furthermore, the chattering phenomenon in the sliding surface was overcome by using the saturation function rather than the sign function. The obtained results proved the usefulness of the proposed controller in suppressing the stick-slip phenomenon for smart industrial drilling systems.


Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Sign in / Sign up

Export Citation Format

Share Document