Detailed analytical model of a single-cylinder diesel engine in the crank angle domain

Author(s):  
Y. H. Zweiri ◽  
J. F. Whidborne ◽  
L. D. Seneviratne

A detailed analytical non-linear dynamic model for single-cylinder diesel engines is developed. The model describes the dynamic behaviour between fuelling and engine speed and includes models of the non-linear engine and dynamometer dynamics, the instantaneous friction terms and the engine thermodynamics. The model operates in the crank angle domain. The dynamometer model enables the study of the engine behaviour under loading. The instantaneous friction model takes into consideration the viscosity variations with temperature. Inertia variations with piston pin offset are presented. In-cycle calculations are performed at each crank angle, and the correct crank angles of ignition, speed variations, fuel supply and air as well as fuel burning rate are predicted. The model treats the cylinder strokes and the manifolds as thermodynamic control volumes by using the filling and emptying method. The model is validated using experimentally measured cylinder pressure and engine instantaneous speeds, under transient operating conditions, and gives good agreement. The model can be used as an engine simulator to aid diesel engines control system design and fault diagnostics.

1978 ◽  
Vol 192 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B. Bull ◽  
M. A. Voisey

Measurements of carbon dioxide concentrations in the exhaust and in the crankcase of two different types of single-cylinder, supercharged diesel engines have been used to determine the amount of exhaust gas reaching the crankcase as piston ring blowby and as leakage through the exhaust valve stem-to-guide clearance. Over a wide range of operating conditions in both engines the carbon dioxide concentration was found to be more dependent on engine fuelling rate per hour than on fuel input per stroke. It was established that blowby through the exhaust valve guide was a major contributor to crankcase contamination. A simple method has been devised, requiring only minor modifications to the engine, that permits the blowby through the piston ring pack and the exhaust valve guides to be determined separately in turbocharged production engines.


Author(s):  
M. E. Leustek ◽  
C. Sethu ◽  
S. Bohac ◽  
Z. Filipi ◽  
D. Assanis

The instantaneous IMEP method is used to measure crank-angle resolved in-cylinder friction force in a series production spark ignition engine as a function of design parameters and operating conditions. An improved telemetry system, which continues to provide data after 50+ hours of operation at speeds as high as 2000 rpm, is presented. Primary sources of error associated with the technique will be presented. These include intra-cycle engine speed fluctuations, the effect of thermal shock on pressure transducers, the effect of connecting rod force calibration and measurement error. The instantaneous IMEP method is used to measure crank-angle resolved in-cylinder engine friction as functions of engine speed and coolant (oil-film) temperature. Both crank-angle resolved and cycle-integrated results are compared.


Author(s):  
Wenbo Sui ◽  
Carrie M. Hall

An optimal combustion phasing leads to a high combustion efficiency and low carbon emissions in diesel engines. With the increasing complexity of diesel engines, model-based control of combustion phasing is becoming indispensable, but precise prediction of combustion phasing is required for such strategies. Since cylinder-to-cylinder variations in combustion can be more significant with advanced combustion techniques, this work focuses on developing a control-oriented combustion phasing model that can be leveraged to provide cylinder-specific estimates. The pressure and temperature of the intake gas reaching each cylinder are predicted by a semi-empirical model and the coefficients of this intake pressure and temperature model are varied from cylinder-to-cylinder. A knock integral model is leveraged to estimate the SOC (start of combustion) and the burn duration is predicted as a function of EGR fraction, equivalence ratio of fuel and residual gas fraction in a burn duration model. After that, a Wiebe function is utilized to estimate CA50 (crank angle at 50% mass of fuel has burned). This cylinder-specific combustion phasing prediction model is calibrated and validated across a variety of operating conditions. A large range of EGR fraction and fuel equivalence ratio were tested in these simulations including EGR levels from 0 to 50%, and equivalence ratios from 0.5 to 0.9. The results show that the combustion phasing prediction model can estimate CA50 with an uncertainty of ±0.5 crank angle degree in all six cylinders. The impact of measurement errors on the accuracy of the prediction model is also discussed in this paper.


2000 ◽  
Vol 123 (4) ◽  
pp. 951-959 ◽  
Author(s):  
Z. S. Filipi ◽  
D. N. Assanis

A non-linear, transient, single-cylinder diesel engine simulation has been developed for predictions of instantaneous engine speed and torque. The foundation of our model is a physically based, thermodynamic, steady-state diesel engine simulation (Assanis, D. N., and Heywood, J. B., 1986, “Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies,” SAE Paper 860329), which has been comprehensively validated for various engine designs. The transient extension of the parent model represents the diesel engine as a non-linear, dynamic system. The instantaneous crank-shaft speed is determined from the solution of the engine-external load dynamics equation, where the engine torque is tracked on a crank-angle basis. Validation of the transient model during rapid engine acceleration shows that both the cyclic fluctuations in the instantaneous crank-shaft speed line and the overall engine response are in good agreement with experimental measurements. Predictions of single-cylinder engine starting reveals the importance of selecting the proper value of the engine moment of inertia in order to control the amplitude of angular velocity fluctuations and ensure stable engine operation. It is further shown that the variation in the inertial forces on the reciprocating components with speed has a dramatic impact on the instantaneous torque profile, and consequently on angular velocity fluctuations.


1974 ◽  
Vol 188 (1) ◽  
pp. 477-483 ◽  
Author(s):  
H. Çakir

A combustion model is presented to account for the nitric oxide formation in diesel engines at all operating conditions. The paper tries to introduce the concept of variable air-fuel ratio estimated to exist during diesel combustion. Analytical solutions are found to be in good agreement with experimental results. Further investigations will be directed to diesel engines having combustion systems other than the M.A.N.-FM system, and to possible remedies to reduce the formation of nitrogen oxides.


2003 ◽  
Vol 125 (3) ◽  
pp. 628-637 ◽  
Author(s):  
Riaz A. Mufti ◽  
Martin Priest

A new method has been developed to directly measure valve train friction as a function of crank angle using specially designed timing belt pulley torque transducers fitted to the inlet and exhaust camshafts of a single-cylinder gasoline engine. Simultaneous and instantaneous friction torque of both the inlet and exhaust camshafts at any engine speed can be measured, with no apparent detrimental effect of timing belt loading on the output reading. Experiments are reported for valve train friction at a range of motored engine operating conditions with different lubricant formulations, with and without a friction modifier. These are compared with the predictions of an existing valve train friction model based upon elastohydrodynamic lubrication theory. Measured friction decreased with increasing engine speed but increased with increasing oil temperature and the fuel economy benefit of friction modifiers was observed. The model yielded similar magnitudes of friction at medium engine speeds and above but predicted much lower friction with high oil temperatures at low speed. Comparison of theory and experiments also suggests that some oil may leak from hydraulic lash adjusters during the cam event with a consequent reduction in geometric torque.


2003 ◽  
Vol 125 (2) ◽  
pp. 563-571 ◽  
Author(s):  
G. Q. Zhang ◽  
D. N. Assanis

A flexible model for computing one-dimensional, unsteady manifold gas dynamics in single-cylinder spark-ignition and diesel engines has been developed. The numerical method applies an explicit, finite volume formulation and a shock-capturing total variation diminishing scheme. The numerical model has been validated against the method of characteristics for valve flows without combustion prior to coupling with combustion engine simulations. The coupling of the gas-dynamics model with single-cylinder, spark-ignition and diesel engine modules is accomplished using the graphical MATLAB-SIMULINK environment. Comparisons between predictions of the coupled model and measurements shows good agreement for both spark ignition and diesel engines. Parametric studies demonstrating the effect of varying the intake runner length on the volumetric efficiency of a diesel engine illustrate the model use.


2021 ◽  
Author(s):  
Omar Ahmed ◽  
Robert Middleton ◽  
Anna Stefanopoulou ◽  
Kenneth Kim ◽  
Chol-Bum Kweon

Abstract Diesel engines equipped with ignition assist devices such as glow plugs may improve combustion behavior at low temperatures and with low cetane fuels found in remote fields. The coordination of injection timing and the energy input of the ignition assist needs to continuously adjust to maintain the best combustion phasing at all conditions. However, most diesel engines do not use closed-loop combustion control and operate in a sub-optimal manner because the dispersion of combustion phasing, also known as cycle-to-cycle variability, requires careful feedback controller design. This work presents an initial investigation of a control-oriented model that captures the average and statistical influence of commercial glow plugs used for ignition assist beyond the start-up phase. Experiments were conducted at a single speed and load operating point as a proof of concept to obtain a model that quantifies the combustion phasing statistics and thus can guide feedback control design. The developed phenomenological model includes the engine’s thermal state because it impacts combustion behavior over the course of repeated experiments. The 3-term mean phasing model and 2-term standard deviation model estimate start of combustion within 0.6 and 0.2 crank angle degrees, respectively, and can be readily expanded to more operating conditions.


2017 ◽  
Vol 19 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Serkan Kulah ◽  
Alexandru Forrai ◽  
Frank Rentmeester ◽  
Tijs Donkers ◽  
Frank Willems

The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the remaining cylinders by applying a real-time, flexible crankshaft model combined with an adaptation algorithm. The single-cylinder pressure sensor concept is implemented on CPU/field-programmable gate array–based hardware. For steady-state engine operating conditions, the added value of the adaptation algorithm is demonstrated for cases in which a fuel quantity change or start of injection change is applied in a single, non-instrumented cylinder. It is shown that for steady-state and transient engine conditions, the cylinder pressure traces and corresponding combustion parameters, indicated mean effective pressure, peak cylinder pressure, and crank angle at 50% heat release, can be estimated with 1.2 bar, 6.0 bar, and 1.1 CAD inaccuracy, respectively.


Sign in / Sign up

Export Citation Format

Share Document