Computational and experimental investigations in a cyclone dust separator

Author(s):  
S M Fraser ◽  
A M Abdel-Razek ◽  
M Z Abdullah

Three-dimensional turbulent flow in a model cyclone has been simulated using PHOENICS code and experimental studies carried out using a laser Doppler anemometry (LDA) system. The experimental results were used to validate the computed velocity distributions based on the standard and a modified k-∊ model. The standard k-∊ model was found to be unsatisfactory for the prediction of the flow field inside the cyclone chamber. By considering the strong swirling flow and the streamlined curvature, a k-∊ model, modified to take account of the Richardson number, provided better velocity distributions and better agreement with the experimental results.

Author(s):  
C. Xu ◽  
R. S. Amano

The three dimensional blading had been used for years in the process of turbomachine designs. In need of turbine blade designs in an efficient manner, the current advancement of CFD technologies allows effective 3D predictions of a complex 3D flow field in turbine blade passages, which can improve the turbine blade performances. Since numerous advantages of 3-D CFD usage had been reported in the open literature, many industries already started to use 3D blading in their turbomachines. In addition, a blade lean and a sweep for the blade design had been also implemented to increase the blade row efficiency. Experimental studies have shown some advantages of these lean and sweep features. Most of the experimental results combine many other features together. However, it is difficult to determine what the effects of different features should be. In this study, detailed numerical analyses were developed and these were used to present the results to gain better understanding of different feature of 3D blading for turbine designers and engineers. Throughout this paper performance impacts on different 3D features are presented and the superiority of the present approach is discussed.


Author(s):  
N Bulot ◽  
I Trébinjac ◽  
X Ottavy ◽  
P Kulisa ◽  
G Halter ◽  
...  

Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. The present article focuses on the results obtained within the impeller, at an operating condition close to the surge of the compressor. The experimental results were obtained from a laser Doppler anemometry investigation. Unsteady numerical simulations of the compressor stage were performed using a three-dimensional Reynolds-averaged Navier—Stokes code with a phase-lagged technique, at both peak efficiency and close to surge operating conditions. A good agreement between the experiments and simulations were obtained, which justifies the use of the computational fluid dynamics results for the comparison of the flow field at both operating conditions (peak efficiency and near surge). Even if the change in flow field within the impeller from peak efficiency to near surge looked to be gradual, an overall rotation of the whole flow in the blade passages led to a non-homogeneous flow at the impeller exit in terms of angle and velocity level. Therefore, the vaned diffuser has to tolerate upstream flows, which are all the more distorted as the operating point moves towards surge.


2000 ◽  
Vol 124 (1) ◽  
pp. 140-146 ◽  
Author(s):  
V. Schramm ◽  
K. Willenborg ◽  
S. Kim ◽  
S. Wittig

This paper reports numerical predictions and measurements of the flow field in a stepped labyrinth seal. The theoretical work and the experimental investigations were successfully combined to gain a comprehensive understanding of the flow patterns existing in such elements. In order to identify the influence of the honeycomb structure, a smooth stator as well as a seal configuration with a honeycomb facing mounted on the stator wall were investigated. The seal geometry is representative of typical three-step labyrinth seals of modern aero engines. The flow field was predicted using a commercial finite volume code with the standard k-ε turbulence model. The computational grid includes the basic seal geometry as well as the three-dimensional honeycomb structures.


2020 ◽  
Author(s):  
Diana De Padova ◽  
Michele Mossa

Turbulence and undertow currents play an important role in surf-zone mixing and transport processes; therefore, their study is fundamental for the understanding of nearshore dynamics and the related planning and management of coastal engineering activities. Pioneering studies qualitatively described the features of breakers in the outer region of the surf zone. More detailed information on the velocity field under spilling and plunging breakers can be found in experimental works, where single-point measurement techniques, such as Hot Wire Anemometry and Laser Doppler Anemometry (LDA), were used to provide maps of the flow field in a time-averaged or ensemble-averaged sense. Moreover, the advent of non-intrusive measuring techniques, such as Particle Image Velocimetry (PIV) provided accurate and detailed instantaneous spatial maps of the flow field. However, by correlating spatial gradients of the measured velocity components, the instantaneous vorticity maps could be deduced. Moreover, the difficulties of measuring velocity due to the existence of air bubbles entrained by the plunging jet have hindered many experimental studies on wave breaking encouraging the development of numerical model as useful tool to assisting in the interpretation and even the discovery of new phenomena. Therefore, the development of an WCSPH method using the RANS equations coupled with a two-equation k–ε model for turbulent stresses has been employed to study of the turbulence and vorticity distributions in in the breaking region observing that these two aspects greatly influence many coastal processes, such as undertow currents, sediment transport and action on maritime structures.


2017 ◽  
Vol 20 (3&4) ◽  
pp. 203-216 ◽  
Author(s):  
M. Z. Abdullah ◽  
Z. Husain ◽  
S. M. Fraser

The experimental investigations of the vortex flow inside the vortex finder (outlet duct) of the cyclone dust separator have been carried out.  Preliminary study from the visualization experiment has been performed and discovered vortex instability inside the conventional vortex finder.  In order to minimize the instabilities, the streamlined entry shape was inserted at the vortex finder entrance and the results showed remarkable improvement of the vortex flow instability inside the vortex finder.  The velocity measurements of two main components of velocity were performed using a laser-Doppler anemometry at the cyclone vortex finder outlet.  The experiments were conducted at a constant flow rate of 0.0246m3/s with the vortex finder diameter of 64mm and with several types of entrance configuration in order to improve the cyclone performance and to reduce the losses.  The use of deswirl devices inside the vortex finder significantly reduced pressure drop and energy losses.


2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.


Author(s):  
Shoichi Kodate ◽  
Tatsuya Kubo ◽  
Shinji Ebara ◽  
Hidetoshi Hashizume

In this study, the characteristic of the swirling flow was analyzed in detail in terms of flow field by means of a visualization experiment using matched refractive index PIV measurement to evaluate the applicability of the swirling flow generated downstream of a three-dimensionally connected dual elbow to the divertor cooling. The dual elbow used in the experiment comprises two 90-degree elbows with the same curvature connected directly in three-dimensional configuration. From the experiment, it was found that strong swirling velocity component appears locally near the pipe wall downstream of the second elbow. Moreover, although the strength of the swirling flow changed gradually as it flowed downstream, it attenuated little even 8D downstream of the dual elbow, where D was the diameter of the piping. Therefore, this swirling flow is expected to survive for a considerable distance downstream of the elbow, and the applicability of this flow field to divertor cooling can be promising. Furthermore turbulence quantities such as Reynolds stress were analyzed in terms of heat transfer performance. Since there were some regions where larger Reynolds stress than a developed turbulent pipe flow was observed near the pipe wall, high heat transfer is expected there.


1972 ◽  
Vol 52 (2) ◽  
pp. 357-367 ◽  
Author(s):  
T. M. Houlihan ◽  
D. J. Hornstra

Velocity distributions within the boundary layer of a swirling flow of incompressible fluid in a convergent conical nozzle have been investigated. Theoretical calculations with boundary conditions more appropriate to physically existent situations discounted the existence of 'super-velocities’ within the boundary layer. Parallel experimental investigations demonstrated an interdependence of core and boundary-layer flows which precluded the maintenance of the flow conditions required by the analysis.


2017 ◽  
Vol 820 ◽  
pp. 549-579 ◽  
Author(s):  
Jason Olsthoorn ◽  
Stuart B. Dalziel

The study of vortex-ring-induced stratified mixing has long played a key role in understanding externally forced stratified turbulent mixing. While several studies have investigated the dynamical evolution of such a system, this study presents an experimental investigation of the mechanical evolution of these vortex rings, including the stratification-modified three-dimensional instability. The aim of this paper is to understand how vortex rings induce mixing of the density field. We begin with a discussion of the Reynolds and Richardson number dependence of the vortex-ring interaction using two-dimensional particle image velocimetry measurements. Then, through the use of modern imaging techniques, we reconstruct from an experiment the full three-dimensional time-resolved velocity field of a vortex ring interacting with a stratified interface. This work agrees with many of the previous two-dimensional experimental studies, while providing insight into the three-dimensional instabilities of the system. Observations indicate that the three-dimensional instability has a similar wavenumber to that found for the unstratified vortex-ring instability at later times. We determine that the time scale associated with this instability growth has an inverse Richardson number dependence. Thus, the time scale associated with the instability is different from the time scale of interface recovery, possibly explaining the significant drop in mixing efficiency at low Richardson numbers. The structure of the underlying instability is a simple displacement mode of the vorticity field.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Martin Kunze ◽  
Konrad Vogeler

This paper presents experimental investigations on flat plate film-cooling in combination with a ribbed cooling channel. The effect of rib placement on the film-cooling injection and the flow in the cooling channel was studied. The velocity fields were measured using optical laser measurement techniques including LDA (laser doppler anemometry) and PIV (particle image velocimetry). A row of three cylindrical film holes is placed in the center rib segment of the cooling channel. The dimensionless rib-to-hole position s/D is varied from 4.5 to 10.5. The investigations are conducted at isothermal conditions for a variation of the coolant Reynolds number Rec,Dh from 10,000 up to 60,000 and for three blowing rates M = 0.5, 0.75, and 1.00. The flow field results for the film-cooling injection showed only a small influence of the rib placement. Due to different coolant-to-main flow pressure ratios across the row, a slight nonuniform share of coolant flow occurs. Intense streamwise mixing and decay of the turbulence in the film jet was observed within the first 10 hole diameters. Enhancement of the turbulence intensity inside the jet core was found with increasing coolant Reynolds numbers. Inside the internal cooling channel, the flow field showed significant influence of the rib position which is most pronounced at low Reynolds number (Rec,Dh = 10,000) and high blowing ratios (M = 1.0). The effect becomes significantly smaller when the Reynolds number is increased. This is mainly attributed to the strongly increasing channel mass flow which equals to a decreasing suction ratio SR = uh/uc of the holes. The experimental results are compared to comprehensive numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document