On the optimal design of railway passenger vehicles

Author(s):  
G. R. M. Mastinu ◽  
M Gobbi

A method is presented for the concept design of railway passenger vehicles. The method requires adequate mathematical modelling for describing quantitatively the many relationships between vehicle parameters and vehicle performance indexes. The main purpose of the method is defining the layout of vehicles (i.e. length, number of wheelsets, etc.) in order to obtain the lowest possible life cycle cost (LCC). The method is based on multiobjective programming (MOP), a branch of operations research. By the proposed method, the optimal design of railway passenger vehicles can be performed in a theoretically correct and rigorous way. Genetic algorithms (GAs) are used to find the numerical solution to the problem. The optimal design of urban, suburban and intercity (IC) passenger vehicles is performed in order to obtain the best compromise between conflicting requirements such as maximum payload, minimum tare weight and axle load, minimum track deterioration, maximum ride comfort, etc. It is shown that, with respect to modern vehicles, a major improvement in LCC would be gained if shorter vehicles and newly designed wheelsets and/or bogies could be adopted. Should this happen, new families of passenger vehicles with two or three axles would be the optimal solutions to be built.

2010 ◽  
Vol 163-167 ◽  
pp. 2295-2303 ◽  
Author(s):  
Yue Chen

In this paper, an optimal design process for high-rise building structures is presented based on cost-effectiveness criterion. Then, an optimal design of a complex high-rise building based on cost-effectiveness criterion is carried out by using the design process. A minimum life cycle cost and corresponding elastic inter story drift considering initial cost and damage cost as two separate objective functions are obtained by using genetic algorithm. Finally, fitting curves of life cycle cost, initial cost, damage cost and corresponding performance indexes are interpolated by using one-dimensional linear interpolation considering elastic inter story drift ratio as control performance indexes. And lots of life cycle cost designs and corresponding performance indexes of the separated objective function are given. The results show that the optimal design process is practical and optimal results are diverse, and can be chosen flexibly by owners.


Author(s):  
Giampiero Mastinu ◽  
Massimiliano Gobbi ◽  
Carlo Miano

Energy ◽  
2021 ◽  
pp. 121244
Author(s):  
Yi He ◽  
Su Guo ◽  
Jianxu Zhou ◽  
Feng Wu ◽  
Jing Huang ◽  
...  

2018 ◽  
Vol 166 ◽  
pp. 02002 ◽  
Author(s):  
Jonghyup Lee ◽  
Seibum Choi

While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB) and other brake-by-wire (BBW) systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Li ◽  
Xiaoli Yu ◽  
Jian Wu

By taking account of double-wishbone independent suspension with two unequal-length arms, the coordinate values of articulated geometry are based on structural limitations and constraint equations of alignment parameters. The sensitivities of front wheel alignment parameters are analyzed using the space analytic geometry method with insight module in ADAMS® software. The multiobjective optimization functions are designed to calculate the coordinate values of hardpoints with front suspension since the effect of time delay due to wheelbase can be easily obtained by vehicle speed. The K&C characteristics have been investigated using GA solutions in the simulation environment. The camber angle decreases from 1.152° to 1.05° and toe-in angle reduces from 1.036° to 0.944°. The simulation results demonstrate that the suggested optimization method is able to satisfy the suspension motion to enhance ride comfort. Experimental results, obtained by K&C test bench, also indicate that the optimized suspension can track the desired trajectory while keeping the vehicle performance in various road conditions.


2019 ◽  
Vol 10 (2) ◽  
pp. 36 ◽  
Author(s):  
Vincenzo Ricciardi ◽  
Valentin Ivanov ◽  
Miguel Dhaens ◽  
Bert Vandersmissen ◽  
Marc Geraerts ◽  
...  

Vehicles equipped with in-wheel motors (IWMs) feature advanced control functions that allow for enhanced vehicle dynamics and stability. However, these improvements occur to the detriment of ride comfort due to the increased unsprung mass. This study investigates the driving comfort enhancement in electric vehicles that can be achieved through blended control of IWMs and active suspensions (ASs). The term “ride blending”, coined in a previous authors’ work and herein retained, is proposed by analogy with the brake blending to identify the blended action of IWMs and ASs. In the present work, the superior performance of the ride blending control is demonstrated against several driving manoeuvres typically used for the evaluation of the ride quality. The effectiveness of the proposed ride blending control is confirmed by the improved key performance indexes associated with driving comfort and active safety. The simulation results refer to the comparison of the conventional sport utility vehicle (SUV) equipped with a passive suspension system and its electric version provided with ride blending control. The simulation analysis is conducted with an experimentally validated vehicle model in CarMaker® and MATLAB/Simulink co-simulation environment including high-fidelity vehicle subsystems models.


Author(s):  
Gang Li ◽  
Xiangli Lin ◽  
Yingying Liu ◽  
Lun Li ◽  
Qingshan Liu ◽  
...  

2014 ◽  
Vol 543-547 ◽  
pp. 374-378
Author(s):  
Jing Zhao ◽  
Pak Kin Wong ◽  
Tao Xu ◽  
Rui Deng ◽  
Cai Yang Wei ◽  
...  

In view of the drawbacks of the traditional optimal methods in the suspension structure optimization, this paper elaborates a genetic algorithm (GA) based global optimal design so as to improve the vehicle performance. Firstly, an independent double wishbone air suspension (IDWAS) is constructed. After defining the linkage relation of the guide mechanism of the IDWAS, the model is verified followed with the parametric design. Furthermore, in consideration of the prescribed targets of the vehicle kinematics, the wheel alignment parameters (WAPs) are selected as the objectives of the optimal design of the vehicle kinematics. Apart from the kinematic analysis of the IDWAS, dynamic analysis before and after optimization as well as the traditional independent double wishbone suspension (TIDWS) are also conducted. Numerical results show that the changes of the WAPs are within a certain range and the guide mechanism follows the prescribed constraints. Simulation results show that the IDWAS is superior to the TIDWS, while the optimized IDWAS has a slight improvement as compared to the original IDWAS in dynamic performance of the suspension.


Sign in / Sign up

Export Citation Format

Share Document