Studies on natural convection-induced flow and thermal behaviour inside electronic equipment cabinet model

Author(s):  
M Ishizuka ◽  
Y Kitamura

In the present work, an important basic flow phenomenon, natural convection-induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the energy equation are solved based on the finite difference method. A generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behaviour inside an electronic equipment cabinet model, which is very difficult, if not impossible, to gather by experiment.

2001 ◽  
Author(s):  
Masaru Ishizuka ◽  
Guoyi Peng ◽  
Shinji Hayama

Abstract In the present work, an important basic flow phenomena, the natural convection induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the temperature equation are solved on the basis of finite difference method. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusions terms are approximated by the implicit Euler form, convection terms in the Navier-Stokes equations are approximated by the third order upwind difference scheme. The heat flux at the body surface of heater is specified. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behavior inside electronic equipment cabinet model which is very difficult, if not impossible, to gather by experiment.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879086 ◽  
Author(s):  
Jintao Yin ◽  
Xiaosheng Wu ◽  
Juanmian Lei ◽  
Tianyu Lu ◽  
Xiaodong Liu

Reynolds-averaged simulations of flow over spinning finned missiles with and without canards were carried out at Ma = 0.6, 0.9, 1.5, and 2.5; α = 4°, 8°, and 12.6°; and [Formula: see text] to investigate different mechanisms of the Magnus effect. An implicit dual-time stepping method and the [Formula: see text] transition model were combined to solve the unsteady Reynolds-averaged Navier–Stokes equations. Grid independence study was conducted, and the computed results were compared with archival experimental data. The transient and time-averaged lateral force coefficients were obtained, and the flow field structures were compared at typical rolling angles. The results indicate that in subsonic conditions, the canards interference intensifies the asymmetrical distortion of the body surface boundary layer and flow separation at different angles of attack, doubling the absolute value of the time-averaged body lateral force; the wash flow effect strengthens on the leeward tail due to the canards interference, increasing its time-averaged lateral force; in supersonic conditions, the shock and expansion waves induced by canards, the vortex system, and the flow separation are responsible for the fluctuation of the body lateral force; the direction of the canard induced wash flow alters as angle of attack increases, increasing first and then decreasing the time-averaged tail lateral force.


1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


1973 ◽  
Vol 60 (1) ◽  
pp. 1-17 ◽  
Author(s):  
M. J. Lighthill

Weis-Fogh (1973) proposed a new mechanism of lift generation of fundamental interest. Surprisingly, it could work even in inviscid two-dimensional motions starting from rest, when Kelvin's theorem states that the total circulation round a body must vanish, but does not exclude the possibility that if the body breaks into two pieces then there may be equal and opposite circulations round them, each suitable for generating the lift required in the pieces’ subsequent motions! The ‘fling’ of two insect wings of chord c (figure 1) turning with angular velocity Ω generates irrotational motions associated with the sucking of air into the opening gap which are calculated in § 2 as involving circulations −0·69Ωc2 and + 0.69Ωc2 around the wings when their trailing edges, which are stagnation points of those irrotational motions, break apart (position (f)). Viscous modifications to this irrotational flow pattern by shedding of vorticity at the boundary generate (§ 3) a leading-edge separation bubble, and tend to increase slightly the total bound vorticity. Its role in a three-dimensional picture of the Weis-Fogh mechanism of lift generation, involving formation of trailing vortices at the wing tips, and including the case of a hovering insect like Encarsia formosa moving those tips in circular paths, is investigated in § 4. The paper ends with the comment that the far flow field of such very small hovering insects should take the form of the exact solution (Landau 1944; Squire 1951) of the Navier-Stokes equations for the effect of a concentrated force (the weight mg of the animal) acting on a fluid of kinematic viscosity v and density p, whenever the ratio mg/pv2 is small enough for that jet-type induced motion to be stable.


2000 ◽  
Vol 6 (6) ◽  
pp. 433-444 ◽  
Author(s):  
Debasish Biswas ◽  
Masaru Ishizuka ◽  
Hideo Iwasaki

In the present work, the flow and temperature fields in large scale rotating electric motor are studied by solving the Navier–Stokes equations along with the temperature equation on the basis of finite difference method. All the equations are written in terms of relative velocity with respect to the rotating frame of reference. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusion terms are approximated by the implicit Euler form, convection terms in the Navier–Stokes equations are approximated by the third order upwind difference scheme. The results of calculation led to a good understanding of the flow behavior, namely, the rotating cavity flow in between the supporting bar of the motor, the flow stagnation and region of temperature rise due to flow stagnation, etc. Also the measured average temperature of the motor coil wall is predicted quite satisfactorily.


1977 ◽  
Vol 83 (1) ◽  
pp. 1-31 ◽  
Author(s):  
G. D. Mallinson ◽  
G. De Vahl Davis

The solution of the steady-state Navier–Stokes equations in three dimensions has been obtained by a numerical method for the problem of natural convection in a rectangular cavity as a result of differential side heating. In the past, this problem has generally been treated as though it were two-dimensional. The solutions explore the three-dimensional motion generated by the presence of no-slip adiabatic end walls. For Ra = 104, the three-dimensional motion is shown to be the result of the inertial interaction of the rotating flow with the stationary walls together with a contribution arising from buoyancy forces generated by longitudinal temperature gradients. The inertial effect is inversely dependent on the Prandtl number, whereas the thermal effect is nearly constant. For higher values of Ra, multiple longitudinal flows develop which are a delicate function of Ra, Pr and the cavity aspect ratios.


2011 ◽  
Vol 674 ◽  
pp. 196-226 ◽  
Author(s):  
FABIEN CANDELIER ◽  
FREDERIC BOYER ◽  
ALBAN LEROYER

The goal of this paper is to derive expressions for the pressure forces and moments acting on an elongated body swimming in a quiescent fluid. The body is modelled as an inextensible and unshearable (Kirchhoff) beam, whose cross-sections are elliptic, undergoing prescribed deformations, consisting of yaw and pitch bending. The surrounding fluid is assumed to be inviscid, and irrotational everywhere, except in a thin vortical wake. The Laplace equation and the corresponding Neumann boundary conditions are first written in terms of the body coordinates of a beam treating the body as a fixed surface. They are then simplified according to the slenderness of the body and its kinematics. Because the equations are linear, the velocity potential is sought as a sum of two terms which are linked respectively to the axial movements of the beam and to its lateral movements. The lateral component of the velocity potential is decomposed further into two sub-components, in order to exhibit explicitly the role of the two-dimensional potential flow produced by the lateral motion of the cross-section, and the role played by the curvature effects of the beam on the cross-sectional flow. The pressure, which is given by Bernoulli's equation, is integrated along the body surface, and the expressions for the resultant and the moment are derived analytically. Thereafter, the validity of the force and moment obtained analytically is checked by comparisons with Navier–Stokes simulations (using Reynolds-averaged Navier–Stokes equations), and relatively good agreements are observed.


Author(s):  
K. F. Weber ◽  
R. A. Delaney

A 3-D Navier-Stokes analysis for turbomachinery flows on C- or O-type grids is presented. The analysis is based on the Beam and Warming implicit algorithm for solution of the unsteady Navier-Stokes equations and is derived from an early version of the ARC3D flow code developed at NASA Ames Research Center. The Navier-Stokes equations are written in a Cartesian coordinate system rotating about the z-axis, and then mapped to a general body-fitted coordinate system. All viscous terms are calculated and the turbulence effects are modelled using the Baldwin-Lomax turbulence model. The equations are discretized using finite differences on stacked body-conforming grids. Modifications made to convert ARC3D from external flow to internal turbomachinery flows and to improve solution accuracy are given in detail. The body-conforming grid construction procedure is also presented. Calculations for several rotor flows have been made, and results of code experimental verification studies are presented. Comparisons of the solutions obtained on the C- and O-type grids are also presented, with particular attention to shock resolution.


1998 ◽  
Vol 120 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Adrin Gharakhani ◽  
Ahmed F. Ghoniem

A grid-free Lagrangian approach is applied to simulate the high Reynolds number unsteady flow inside a three-dimensional domain with moving boundaries. For this purpose, the Navier-Stokes equations are expressed in terms of the vorticity transport formulation. The convection and stretch of vorticity are obtained using the Lagrangian vortex method, while diffusion is approximated by the random walk method. The boundary-element method is used to solve a potential flow problem formulated to impose the normal flux condition on the boundary of the domain. The no-slip condition is satisfied by a vortex tile generation mechanism at the solid boundary, which takes into account the time-varying boundary surfaces due to, e.g., a moving piston. The approach is entirely grid-free within the fluid domain, requiring only meshing of the surface boundary, and virtually free of numerical diffusion. The method is applied to study the evolution of the complex vortical structure forming inside the time-varying semi-confined geometry of a cylinder equipped with an eccentric inlet port and a harmonically driven piston. Results show that vortical structures resembling those observed experimentally in similar configurations dominate this unsteady flow. The roll-up of the incoming jet is responsible for the formation of eddies whose axes are nearly parallel to the cylinder axis. These eddies retain their coherence for most of the stroke length. Instabilities resembling conventional vortex ring azimuthal modes are found to be responsible for the breakup of these toroidal eddies near the end of the piston motion. The nondiffusive nature of the numerical approach allows the prediction of these essentially inviscid phenomena without resorting to a turbulence model or the need for extremely fine, adaptive volumetric meshes.


2019 ◽  
Vol 150 (2) ◽  
pp. 569-606 ◽  
Author(s):  
Dat Cao ◽  
Luan Hoang

AbstractThe Navier-Stokes equations for viscous, incompressible fluids are studied in the three-dimensional periodic domains, with the body force having an asymptotic expansion, when time goes to infinity, in terms of power-decaying functions in a Sobolev-Gevrey space. Any Leray-Hopf weak solution is proved to have an asymptotic expansion of the same type in the same space, which is uniquely determined by the force, and independent of the individual solutions. In case the expansion is convergent, we show that the next asymptotic approximation for the solution must be an exponential decay. Furthermore, the convergence of the expansion and the range of its coefficients, as the force varies are investigated.


Sign in / Sign up

Export Citation Format

Share Document