IPRP (Integrated-Pyrolysis Regenerated Plant): Gas turbine and externally heated rotary-kiln pyrolysis as a biomass and waste energy conversion system. Influence of thermodynamic parameters

Author(s):  
F Fantozzi ◽  
B D'Alessandro ◽  
G Bidini

Sustainability is one of the main goals to achieve in order to guarantee a future for future generations and requires, among other issues, the recourse to renewable energy sources and the minimization of waste production. These two issues are contemporarily achieved when converting waste and residual biomass into energy. This paper presents an innovative concept for energy conversion of the abovementioned residual fuels; it combines a rotary-kiln pyrolyser, where the residual energy sources are converted into a medium lower heating value (LHV) syngas, with a gas turbine that produces energy, and also provides waste heat to maintain the endothermic pyrolysis reaction. Byproducts of the reaction include char and tars that have an interesting energetic content and may also be used to provide supplementary heat to the process. Through software modelling the paper analyses the influence on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum for different working conditions that are characteristic of different sizes of gas turbines. This is interesting both for medium-to-big size power plants, where the IPRP efficiency is comparable to a grate-based incinerator, but at lower investment costs, and in the micro-small scale, for which there is no available technology on the market.

Author(s):  
Carlo M. Bartolini ◽  
Danilo Salvi

The steam generated through the use of waste heat recovered from a steam injection gas turbine generally exceeds the maximum mass of steam which can be injected into steam injection gas turbine. The ratio between the steam and air flowing into the engine is not more than 10–15%, as an increase in the pressure ratio can cause the compressor to stall. Naturally, the surplus steam can be utilized for a variety of alternative applications. During the warmer months, the ambient temperature increases and results in reduced thermal efficiency and electrical capacity. An inlet air cooling system for the compressor on a steam injection gas turbine would increase the rating and efficiency of power plants which use this type of equipment. In order to improve the performance of steam injection gas turbines, the authors investigated the option of cooling the intake air to the compressor by harnessing the thermal energy not used to produce the maximum quantity of steam that can be injected into the engine. This alternative use of waste energy makes it possible to reach maximum efficiency in terms of waste recovery. This study examined absorption refrigeration technology, which is one of the various systems adopted to increase efficiency and power rating. The system itself consists of a steam injection gas turbine and a heat recovery and absorption unit, while a computer model was utilized to evaluate the off design performance of the system. The input data required for the model were the following: an operating point, the turbine and compressor curves, the heat recovery and chiller specifications. The performance of an Allison 501 KH steam injection gas plant was analyzed by taking into consideration representative ambient temperature and humidity ranges, the optimal location of the chiller in light of all the factors involved, and which of three possible air cooling systems was the most economically suitable. In order to verify the technical feasibility of the hypothetical model, an economic study was performed on the costs for upgrading the existing steam injection gas cogeneration unit. The results indicate that the estimated pay back period for the project would be four years. In light of these findings, there are clear technical advantages to using gas turbine cogeneration with absorption air cooling in terms of investment.


Author(s):  
Maulana Arifin ◽  
Markus Schatz ◽  
Damian M. Vogt

Abstract The application of power plants based on renewable energy sources is attractive from an ecological viewpoint. Micro Gas Turbine (MGT) combined with solar energy is a highly promising technology for small-scale electric power generations in remote areas. In MGT state-of-the-art development, the necessity of the numerical optimization in turbomachinery components becomes increasingly important due to its direct impact on the MGT cycle performance. The present paper provides the multidisciplinary design optimization (MDO) of a radial turbine and radial compressor for a 40 kW Solar Hybrid Micro Gas Turbine (SHGT) with a 15m diameter parabolic dish concentrator. The objectives of MDO are to maximize the stage efficiency, to minimize the maximum stress and the inertia, and to enhance the operational flexibility. Preliminary design and performance map prediction using one-dimensional (1D) analysis are performed for both turbine and compressor at various speed lines followed by full three-dimensional (3D) Computational Fluid Dynamics (CFD), Finite Element (FE) analyses and 3D parameterization in the MDO simulations. The purpose of 1D analysis is to set the primary parameters for initial geometry such as rotor dimensions, passage areas, diffuser and volute size. The MDO has been performed using fully coupled multi-stream tube (MST), 3D CFD and FE simulations. MST is used for calculating the load on the blade and the flow distribution from hub to shroud and linearized blade-to-blade calculations based on quasi-three dimensional flow. Thereafter, 3D CFD simulations are performed to calculate efficiencies while the structural stresses are simulated by means of FE analyses. In the current studies, Numeca Fine/Turbo is used as a CFD solver and Ansys Mechanical as a FEA solver, together with Axcent™ as an interface to Fine/Design 3D for geometry parameterization. Furthermore, the cycle analysis for SHGT has been performed to evaluate the effect of the new turbomachinery components from the MDO on the SHGT system performance. It is found that using the MST fully coupled with CFD and FE analysis can significantly reduce the computational cost and time on the design and development process.


Author(s):  
Lukas Aichmayer ◽  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

Hybrid solar micro gas-turbines are a promising technology for supplying controllable low-carbon electricity in off-grid regions. A thermoeconomic model of three different hybrid micro gas-turbine power plant layouts has been developed, allowing their environmental and economic performance to be analyzed. In terms of receiver design, it was shown that the pressure drop is a key criterion. However, for recuperated layouts, the combined pressure drop of the recuperator and receiver is more important. In terms of both electricity costs and carbon emissions, the internally-fired recuperated micro gas-turbine was shown to be the most promising solution of the three configurations evaluated. Compared to competing diesel generators, the electricity costs from hybrid solar units are between 10% and 43% lower, while specific CO2 emissions are reduced by 20–35%.


Author(s):  
Lukas Aichmayer ◽  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

Hybrid solar micro gas-turbines are a promising technology for supplying controllable low-carbon electricity in off-grid regions. A thermoeconomic model of three different hybrid micro gas-turbine power plant layouts has been developed, allowing their environmental and economic performance to be analyzed. In terms of receiver design, it was shown that the pressure drop is a key criterion. However, for recuperated layouts the combined pressure drop of the recuperator and receiver is more important. The internally-fired recuperated micro gas-turbine was shown to be the most promising solution of the three configurations evaluated, in terms of both electricity costs and carbon emissions. Compared to competing diesel generators, the electricity costs from hybrid solar units are between 10% and 43% lower, while specific CO2 emissions are reduced by 20–35%.


2021 ◽  
Vol 13 (7) ◽  
pp. 3636
Author(s):  
Balázs Kulcsár ◽  
Tamás Mankovits ◽  
Piroska Gyöngyi Ailer

In addition to the examination of electric power from local renewables, this study has sought the answer to the question of what proportion of vehicles are fueled by environmentally friendly energy saving technologies in the vehicle fleets of Hungarian settlements. Further, the study attempts to shed light on the self-sufficiency of Hungarian settlements with respect to the electricity and transport segments. In our assessments, the performance of small-scale household power plants (SSHPPs) utilizing local renewable energy sources, and small-scale power plants with installed capacities under 0.5 MW, was taken into account, as were the proportions of vehicles operating with partly or completely clean energy sources in the vehicle fleets of the individual settlements. Finally, the composition of the vehicle fleet has been examined in the light of the quantities of renewable electricity generated in the individual settlements, in order to consider whether these settlements are capable of covering the energy needs of their vehicle stocks from local sources. In the light of the results, the changes generated by the incentives and investments introduced over the past ten years can be established and subsequently, the energy policy needs in the future can be assessed. Our study has incorporated energy geography and settlement geography aspects.


2021 ◽  
Author(s):  
Sahishnukumar Shah

The small-scale vertical axis wind turbine is designed and modeled in this project, considering all aspects of wind turbine such as Blade design, stator design, rotor design and converter system design. Electric Power has become a prime necessity for any country for economic development. The conventional fuel sources for power generation are depleting fast. The favorable alternatives are renewable energy sources. Although more invention has to be carried out in the field of renewable energy sources, every little effort in this direction may provide a solution to reach most economical power generation point. Hence the same topic was selected for Masters Project. The goal of this project is to design a small scale Vertical Axis Wind Turbine, which is capable of producing electrical power even with low wind velocity. It can be placed on road dividers, sidetracks of train or remote places i.e. villages, military camps, where it is not economical to transmit power from power plants. Implementation of such project would reduce the dependence of an industry or remote houses, on electricity board.


Author(s):  
David Sánchez ◽  
Miguel Rollán ◽  
Lourdes García-Rodríguez ◽  
G. S. Martínez

Abstract This paper presents the preliminary design and techno-economic assessment of an innovative solar system for the simultaneous production of water and electricity at small scale, based on the combination of a solar micro gas turbine and a bottoming desalination unit. The proposed layout is such that the former system converts solar energy into electricity and rejects heat that can be used to drive a thermal desalination plant. A design model is developed in order to select the main design parameters for two different desalination technologies, phase change and membrane desalination, in order to better exploit the available electricity and waste heat from the turbine. In addition to the usual design parameters of the mGT, the impact of the size of the collector is also assessed and, for the desalination technologies, a tailored multi-effect distillation unit is analysed through the selection of the corresponding design parameters. A reverse osmosis desalination system is also designed in parallel, based on commercial software currently used by the water industry. The results show that the electricity produced by the solar micro gas turbine can be used to drive a Reverse Osmosis system effectively whereas the exhaust gases could drive a distillation unit. This would decrease the stack temperature of the plant, increasing the overall energy efficiency of the system. Nevertheless, the better thermodynamic performance of this fully integrated system does not translate into a more economical production of water. Indeed, the cost of water turns out lower when coupling the solar microturbine and Reverse Osmosis units only (between 3 and 3.5 €/m3), whilst making further use the available waste heat in a Multi Effect Distillation system rises the cost of water by 15%.


Author(s):  
A. T. D. Perera ◽  
Vahid M. Nik ◽  
D. Mauree ◽  
J.-L. Scartezzini

Integration of non-dispatchable renewable energy sources such as wind and solar into the grid is challenging due to the stochastic nature of energy sources. Hence, electrical hubs (EH) and virtual power plants that combine non-dispatchable energy sources, energy storage and dispatchable energy sources such as internal combustion generators and micro gas turbines are getting popular. However, designing such energy systems considering the electricity demand of a neighborhood, curtailments for grid interactions and real time pricing (RTP) of the main utility grid (MUG) is a difficult exercise. Seasonal and hourly variation of electricity demand, potential for each non-dispatchable energy source and RTP of MUG needs to be considered when designing the energy system. Representation of dispatch strategy plays a major role in this process where simultaneous optimization of system design and dispatch strategy is required. This study presents a bi-level dispatch strategy based on reinforced learning for simultaneous optimization of system design and operation strategy of an EH. Artificial Neural Network (ANN) was combined with a finite state controller to obtain the operating state of the system. Pareto optimization is conducted considering, lifecycle cost and system autonomy to obtain optimum system design using evolutionary algorithm.


2021 ◽  
Author(s):  
Sahishnukumar Shah

The small-scale vertical axis wind turbine is designed and modeled in this project, considering all aspects of wind turbine such as Blade design, stator design, rotor design and converter system design. Electric Power has become a prime necessity for any country for economic development. The conventional fuel sources for power generation are depleting fast. The favorable alternatives are renewable energy sources. Although more invention has to be carried out in the field of renewable energy sources, every little effort in this direction may provide a solution to reach most economical power generation point. Hence the same topic was selected for Masters Project. The goal of this project is to design a small scale Vertical Axis Wind Turbine, which is capable of producing electrical power even with low wind velocity. It can be placed on road dividers, sidetracks of train or remote places i.e. villages, military camps, where it is not economical to transmit power from power plants. Implementation of such project would reduce the dependence of an industry or remote houses, on electricity board.


Author(s):  
V. A. Petrushchenkov ◽  
I. A. Korshakova

THE PURPOSE. Perform a review of information sources on the state of small-capacity thermal power in Russia when the unit capacity of steam turbine, gas turbine and gas piston units is less than 25 MW. Evaluate the information sources of the authors of publications that provide statistics for small-scale energy facilities. Make an assessment of the state of small-scale energy in Russia based on a specific list of objects maintained by the authors over the past 25 years. Consider the manufacturers and characteristics of different types of aggregates, as well as the schemes for integrating aggregates into the thermal schemes of existing sources. METHODS. Statistical indicators of small-scale energy facilities presented in tabular form in Excel are determined based on the built-in functions of this program. RESULTS. The production and characteristics of modern units based on steam turbines are considered. Practical schemes for integrating counter-pressure steam turbo generators into the thermal schemes of existing heat sources are presented. Russian and foreign manufacturers and characteristics of electric units based on gas turbines and internal combustion engines operating on the Otto cycle are considered. Thermal diagrams of gas-turbine and gas-piston units producing both electric and thermal energy are given. A statistical analysis of the list of small-scale cogeneration and power plants of simple cycle compiled by the authors is performed. The number of stations of different types, their distribution by total capacity, regions, industries, and years of commissioning are determined. CONCLUSION. It is shown that gas-turbine and gas-piston installations with a total capacity of up to 80% play a decisive role in the structure of small thermal energy. Quantitative indicators - the total number of stations of small-scale power facilities is about 1500 units and the total electric capacity is more than 18 GW allow us to get an idea of the significant role of small-scale heat power in Russia. Quantitative indicators for solar and wind power plants in the country are also considered.


Sign in / Sign up

Export Citation Format

Share Document