Clean coal technologies

Author(s):  
J T McMullan ◽  
B C Williams ◽  
E P Sloan

Power generation in Europe and elsewhere relies heavily on coal as the source of energy and this reliance will increase in the future as other fossil fuels become progressively more expensive. The existing stock of coal-fired power stations mainly use pulverized fuel boilers and present designs based on ultrasupercritical steam cycles are as efficient and as low in SOx and NOx emissions as is possible without incurring excessive additional costs. This paper examines the options for coal-based power generation technologies and compares their technical, environmental and economic performance. These options include atmospheric and pressurized fluidized bed combustion and a range of integrated gasification combined cycle systems. Integrated gasification combined cycles give good efficiency and very low emissions, but further optimization is required to make them economically attractive. Conceptual cycles based on pressurized pulverized combustion, dual fuel hybrid cycles, fuel cells and magnetohydrodynamics are also covered in outline.

Author(s):  
Jens Wolf ◽  
Federico Barone ◽  
Jinyue Yan

This paper investigates the performance of a new power cycle, a so called Evaporative Biomass Air Turbine (EvGT-BAT) cycle with gasification for topping combustion. The process integrates an externally fired gas turbine (EFGT), an evaporative gas turbine (EvGT) and biomass gasification. Through such integration, the system may provide the potential for adapting features from different advanced solid-fuel based power generation technologies, e.g. externally fired gas turbine, integrated gasification combined cycle (IGCC) and fluidized bed combustion, thus improving the system performance and reducing the technical difficulties. In the paper, the features of the EvGT-BAT cycle have been addressed. The thermal efficiencies for different integrations of the gasification for topping combustion and the heat recovery have been analyzed. By drying the biomass feedstock, the thermal efficiency of the EvGT-BAT cycle can be increased by more than 3 percentage points. The impact of the outlet air temperature of the high temperature heat exchanger has also been studied in the present system. Finally, the size of the gasifier for topping combustion has been compared with the one in IGCC, which illustrates that the gasifier of the studied system can be much smaller compared to IGCC. The results of the study will be useful for the future engineering development of advanced solid fuel power generation technologies.


2002 ◽  
Vol 124 (4) ◽  
pp. 757-761 ◽  
Author(s):  
J. Wolf ◽  
F. Barone ◽  
J. Yan

This paper investigates the performance of a new power cycle, a so called evaporative biomass air turbine (EvGT-BAT) cycle with gasification for topping combustion. The process integrates an externally fired gas turbine (EFGT), an evaporative gas turbine (EvGT), and biomass gasification. Through such integration, the system may provide the potential for adapting features from different advanced solid-fuel-based power generation technologies, e.g., externally fired gas turbine, integrated gasification combined cycle (IGCC), and fluidized bed combustion, thus improving the system performance and reducing the technical difficulties. In the paper, the features of the EvGT-BAT cycle have been addressed. The thermal efficiencies for different integrations of the gasification for topping combustion and the heat recovery have been analyzed. By drying the biomass feedstock, the thermal efficiency of the EvGT-BAT cycle can be increased by more than three percentage points. The impact of the outlet air temperature of the high-temperature heat exchanger has also been studied in the present system. Finally, the size of the gasifier for topping combustion has been compared with the one in IGCC, which illustrates that the gasifier of the studied system can be much smaller compared to IGCC. The results of the study will be useful for the future engineering development of advanced solid fuel power generation technologies.


Author(s):  
Farshid Zabihian ◽  
Darrel C. Gartin ◽  
Alan S. Fung

In this paper, research will be discussed on how to scientifically, systematically, and economically reduce greenhouse gas emissions within the state of West Virginia, USA. While fossil fuels such as coal and natural gas remain the top resources within this particular state, there are new technologies, different approaches and modifications to current power generation cycles, and different fuels that can be presented to gain further reduction of these harmful emissions. To achieve this objective, eight different scenarios were introduced. In the first scenario, existing power stations’ fuel was switched to natural gas. Existing power plants were replaced by natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), solid oxide fuel cell (SOFC), hybrid SOFC, and SOFC-IGCC hybrid power stations in scenarios number 2 to 6, respectively. The last two scenarios involved carbon capture systems. It has been found that the CO2 emissions can be significantly reduced by introducing changes and alternatives to the current cycles and methods that are in place today.


Author(s):  
Mamoru Ozawa ◽  
Ryosuke Matsumoto ◽  
Hisashi Umekawa

Based on the increased attention to “energy security” and “sustainable development”, it is essential to promote clean use of coal as a fuel. Typical advanced technologies are demonstrated by the pressurized fluidized-bed combined cycle (PFBC) and integrated gasification combined cycle (IGCC). Focusing mainly on these two examples as the advanced energy conversion technology, related problems are reviewed. The PFBC technology is a composite technology of conventional fluidized bed and combined-cycle, in which ash, being a typical component of coal, is not melted but is removed mainly in the fluidized bed. On the other hand, the IGCC is much more complicated and ash removal is conducted by melting in the combustor. Heat released there is utilized for gasification process in the reductor installed just downstream the combustor. Even though both systems have very high potential for clean and efficient use of coal, the commercial plants are limited in a very small number or at the stage of just a demonstration plant. To extend and develop clean-coal technology in the electric power generation market, a strategy of the government on the energy technology as well as the long-term competition in the market are indispensable, otherwise related technologies as well as the engineers involved will be lost.


Author(s):  
Roddie R. Judkins ◽  
David P. Stinton ◽  
Robert G. Smith ◽  
Edward M. Fischer ◽  
Joseph H. Eaton ◽  
...  

A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to full-size, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are in progress. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues identified during testing and the status of commercialization of the filters are described.


Sign in / Sign up

Export Citation Format

Share Document