Fibre Reinforcement and Mechanical Stability in Articular Cartilage

1984 ◽  
Vol 13 (3) ◽  
pp. 153-156 ◽  
Author(s):  
D W L Hukins ◽  
R M Aspden ◽  
Y E Yarker

The gel phase of articular cartilage is reinforced by collagen fibrils. These fibrils have low flexural and torsional stiffness, but are able to provide reinforcement if deformation of the tissue increases their tensile stress. An estimate suggests that the lengths of collagen fibrils in articular cartilage are at least of the same order as their critical length so that tensile stress in the tissue will increase the stress in the fibrils rather than simply pull them out of the gel. In the surface zone the collagen fibrils are oriented so that the efficiency of reinforcement, η, is about 0.6 tangential to the surface; tension in the fibrils is thus able to withstand swelling pressure within the tissue whose condition for stability resembles that of a pressure vessel. Swelling pressure allows the tissue to support applied pressure. An intermediate zone has a roughly isotropic η value of about 0.2, while in the deep zone collagen fibrils appear to tie the cartilage to the subchondral bone; in this deep zone η has a value of about 0.6 perpendicular to the surface direction. There is also some preferred orientation of collagen fibrils in the plane of the articular surface within the surface zone; in patellar cartilage the preferred orientations can be related to the direction of stress which could be generated by movement of the joint.

Cartilage ◽  
2021 ◽  
pp. 194760352098877
Author(s):  
Roy D. Bloebaum ◽  
Andrew S. Wilson ◽  
William N. Martin

Objective There has been a debate as to the alignment of the collagen fibers. Using a hand lens, Sir William Hunter demonstrated that the collagen fibers ran perpendicular and later aspects were supported by Benninghoff. Despite these 2 historical studies, modern technology has conflicting data on the collagen alignment. Design Ten mature New Zealand rabbits were used to obtain 40 condyle specimens. The specimens were passed through ascending grades of alcohol, subjected to critical point drying (CPD), and viewed in the scanning electron microscope. Specimens revealed splits from the dehydration process. When observing the fibers exposed within the opening of the splits, parallel fibers were observed to run in a radial direction, normal to the surface of the articular cartilage, radiating from the deep zone and arcading as they approach the surface layer. After these observations, the same samples were mechanically fractured and damaged by scalpel. Results The splits in the articular surface created deep fissures, exposing parallel bundles of collagen fibers, radiating from the deep zone and arcading as they approach the surface layer. On higher magnification, individual fibers were observed to run parallel to one another, traversing radially toward the surface of the articular cartilage and arcading. Mechanical fracturing and scalpel damage induced on the same specimens with the splits showed randomly oriented fibers. Conclusion Collagen fiber orientation corroborates aspects of Hunter’s findings and compliments Benninghoff. Investigators must be aware of the limits of their processing and imaging techniques in order to interpret collagen fiber orientation in cartilage.


1999 ◽  
Author(s):  
L. P. Li ◽  
M. D. Buschmann ◽  
A. Shirazi-Adl

Abstract Articular cartilage is a highly nonhomogeneous, anisotropic and multiphase biomaterial consisting of mainly collagen fibrils, proteoglycans and water. Noncalcified cartilage is morphologically divided into three zones along the depth, i.e. superficial, transitional and radial zones. The thickness, density and alignment of collagen fibrils vary from the superficial zone, where fibrils are oriented parallel to the articular surface, to the radial zone where fibrils are perpendicular to the boundary between bone, and cartilage. The concentration of proteoglycans increases with the depth from the cartilage surface. These regional differences have significant implications to the mechanical function of joints, which is to be explored theoretically in the present work by considering inhomogeneity along the cartilage depth. A nonlinear fibril reinforced poroelastic model is employed as per Li et al. (1999) in which the collagen fibrils were modeled as a distinct constituent whose tensile stiffness was taken to be very high and be strain dependent but whose compressive stiffness was neglected.


1998 ◽  
Vol 120 (3) ◽  
pp. 355-361 ◽  
Author(s):  
L. A. Setton ◽  
H. Tohyama ◽  
V. C. Mow

A new experimental method was developed to quantify parameters of swelling-induced shape change in articular cartilage. Full-thickness strips of cartilage were studied in free-swelling tests and the swelling-induced stretch, curvature, and areal change were measured. In general, swelling-induced stretch and curvature were found to increase in cartilage with decreasing ion concentration, reflecting an increasing tendency to swell and “curl” at higher swelling pressures. An exception was observed at the articular surface, which was inextensible for all ionic conditions. The swelling-induced residual strain at physiological ionic conditions was estimated from the swelling-induced stretch and found to be tensile and from 3–15 percent. Parameters of swelling were found to vary with sample orientation, reflecting a role for matrix anisotropy in controlling the swelling-induced residual strains. In addition, the surface zone was found to be a structurally important element, which greatly limits swelling of the entire cartilage layer. The findings of this study provide the first quantitative measures of swelling-induced residual strain in cartilage ex situ, and may be readily adapted to studies of cartilage swelling in situ.


Author(s):  
Seonghun Park ◽  
Ramaswamy Krishnan ◽  
Steven B. Nicoll ◽  
Gerard A. Ateshian

Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than compression. Theoretical analyses have suggested that this tension-compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression [1]. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Petra Rita Basso ◽  
Elena Carava' ◽  
Marina Protasoni ◽  
Marcella Reguzzoni ◽  
Mario Raspanti

The articular cartilage has been the subject of a huge amount of research carried out with a wide array of different techniques. Most of the existing morphological and ultrastructural data on the this tissue, however, were obtained either by light microscopy or by transmission electron microscopy. Both techniques rely on thin sections and neither allows a direct, face-on visualization of the free cartilage surface (synovial surface), which is the only portion subject to frictional as well as compressive forces. In the present research, high resolution visualization by scanning electron microscopy and by atomic force microscopy revealed that the collagen fibrils of the articular surface are exclusively represented by thin, uniform, parallel fibrils evocative of the heterotypic type IX-type II fibrils reported by other authors, immersed in an abundant matrix of glycoconjugates, in part regularly arranged in phase with the D-period of collagen. Electrophoresis of fluorophore-labeled saccharides confirmed that the superficial and the deeper layers are quite different in their glycoconjugate content as well, the deeper ones containing more sulfated, more acidic small proteoglycans bound to thicker, more heterogenous collagen fibrils. The differences found between the synovial surface and the deeper layers are consistent with the different mechanical stresses they must withstand.


Author(s):  
Nadeen O. Chahine ◽  
Christopher C.-B. Wang ◽  
Clark T. Hung ◽  
Gerard A. Ateshian

The existence of osmotic pressure inside cartilage gives the tissue a propensity to swell. This swelling pressure is balanced by the tensile stresses generated within the solid matrix at free-swelling [1, 2]. Recent studies have shown that cartilage exhibits significant strain-softening when compressed relative to its free-swelling state [3–5]. Such strain-softening behavior has been physically interpreted within the context of osmotic swelling pressure and tension-compression nonlinearity [4, 9]. This has provided the rationale for extracting both the tensile and compressive Young’s moduli from uniaxial compression tests on the same specimen [4, 5]. The goal of the current study is to optically determine another important elastic property, i.e. the equilibrium Poisson’s ratio of young bovine articular cartilage when uniaxially compressed along its three characteristic directions: parallel and perpendicular to the split-line direction (1- and 2-direction, respectively), and in a direction normal to the articular surface (3-direction). Furthermore, the external bath concentration effects on the Poisson’s ratios will be explored at various strain levels.


Author(s):  
Onyi N. Irrechukwu ◽  
Marc E. Levenston

As articular cartilage is avascular, diffusion at a tissue length scale is the primary mode of solute and nutrient transport to its cells. The major extracellular matrix components are water (70–80%), chondrocytes, collagen (10–20%) and proteoglycans (5–10%) bearing sulfated glycosaminoglycans (GAG) [1]. Electron microscopy studies have shown that articular cartilage can be regarded as having three separate structural zones — superficial, middle and deep. The proportions of the various matrix components vary from the surface to the deep zone in any given joint and the greatest variations in content occur in the GAG content [2]. In addition the collagen fiber alignment varies, with fibers oriented parallel to the articular surface in the superficial zone, randomly oriented in the middle zone and oriented perpendicular to the surface in the deep zone. To a large extent, it is the spatially inhomogeneous composition of articular cartilage and microstructural orientation of its extracellular matrix components that determines the tortuosity of the transport pathway [3]. We therefore hypothesized that the diffusivity profile of a solute through the cartilage depth is inversely related to the GAG content and that the ratio between the axial and lateral diffusivities within each cartilage zone is related to the degree of anisotropy within the zone.


1982 ◽  
Vol 93 (3) ◽  
pp. 921-937 ◽  
Author(s):  
A R Poole ◽  
I Pidoux ◽  
A Reiner ◽  
L Rosenberg

Monospecific antibodies to bovine cartilage proteoglycan monomer (PG) and link protein (LP) have been used with immunoperoxidase electron microscopy to study the distribution and organization of these molecules in bovine articular cartilage. The following observations were made: (a) The interterritorial matrix of the deep zone contained discrete interfibrillar particulate staining for PG and LP. This particulate staining, which was linked by faint bands of staining (for PG) or filaments (for LP), was spaced at 75- to 80-nm intervals. On collagen fibrils PG was also detected as particulate staining spaced at regular intervals (72 nm), corresponding to the periodicity of collagen cross-banding. The interfibrillar PG staining was often linked to the fibrillar PG staining by the same bands or filaments. The latter were cleaved by a proteinase-free Streptomyces hyaluronidase with the removal of much of the interfibrillar lattice. Since this enzyme has a specificity for hyaluronic acid, the observations indicate that the lattice contains a backbone of hyaluronic acid (which appeared as banded or filamentous staining) to which is attached LP and PG, the latter collapsing when the tissue is fixed, reacted with antibodies, and prepared for electron microscopy. Thishyaluronic acid is anchored to collagen fibrils at regular intervals where PG is detected on collagen. PG and LP detected by antibody in the interterritorial zones are essentially fully extractible with 4 M guanidine hydrochloride. These observations indicated that interfibrillar PG and LP is aggregated with HA in this zone. (b) The remainder of the cartilage matrix had a completely different organization of PG and LP. There was no evidence of a similar latticework based on hyaluronic acid. Instead, smaller more closely packed particulate staining for PG was seen everywhere irregularly distributed over and close to collagen fibrils. LP was almost undetectable in the territorial matrix of the deep zone, as observed previously. In the middle and superficial zones, stronger semiparticulate staining for LP was distributed over collagen fibrils. (c) In the superficial zone, reaction product for PG was distributed evenly on collagen fibrils as diffuse staining and also irregularly as particulate staining. LP was observed as semiparticulate staining over collagen fibrils. The diffuse staining for PG remained after extraction with 4 M guanidine hydrochloride. (d) In pericellular matrix, most clearly identified in middle and deep zones, the nature and organization of reaction product for PG and LP were similar to those observed in the territorial matrix, except that LP and PG were more strongly stained and amorphous staining for both components was also observed. (e) This study demonstrates striking regional variations of ultrastructural organization of PG and LP in articular cartilage...


1986 ◽  
Vol 34 (5) ◽  
pp. 619-625 ◽  
Author(s):  
A R Poole ◽  
C Webber ◽  
I Pidoux ◽  
H Choi ◽  
L C Rosenberg

A monoclonal antibody to a core-protein-related epitope of a small dermatan sulfate-rich proteoglycan (DS-PGII) isolated from adult bovine articular cartilage (22) was used to localize this molecule, or molecules containing this epitope, in bovine articular cartilages, in cartilage growth plate, and in other connective tissues. Using an indirect method employing peroxidase-labeled pig anti-mouse immunoglobulin G, DS-PGII was shown to be present mainly in the superficial zone of adult articular condylar cartilage of the metacarpal-phalangeal joint. In fetal articular and epiphyseal cartilages, the molecule was uniformly distributed throughout the matrix. By approximately 10 months of age it was confined mainly to the superficial and middle zones of articular cartilage and the inter-territorial and pericellular matrix of the deep zone. DS-PGII was not detected in the primary growth plate of the fetus except in the proliferative zone, where it was sometimes present in trace amounts. In contrast, it was present throughout the adjacent matrix of developing epiphyseal cartilage. In the trabeculae of the metaphysis, strong staining for DS-PGII was seen in decalcified osteoid and bone immediately adjacent to osteoblasts. Staining was also observed on collagen fibrils in skin, tendon, and ligament and in the adventitia of the aorta and of smaller arterial vessels in the skin. These observations indicate that DS-PGII and/or molecules containing this epitope are widely distributed in collagenous tissues, where the molecule is intimately associated with collagen fibrils; in adult cartilage this association is limited mainly to the narrow parallel arrays of fibrils which are found in the superficial zone at the articular surface. From its intimate association and other studies, this molecule may play an important role in determining the sizes and tensile properties of collagen fibrils; it may also be involved in the calcification of osteoid but not of cartilage.


Author(s):  
S. M. Hosseini ◽  
Y. Wu ◽  
C. C. van Donkelaar ◽  
K. Ito

Articular cartilage (AC) functions as a load-bearing, low friction, and wear resistant material in diarthrodial joints. The distribution of AC matrix composition is highly depth-dependent. The fluid fraction in AC is 80% and decreases from surface to the depth of the tissue [1]. Collagen constitutes 70% of the tissue dry weight, and is highest in the superficial and deep zones and lowest in the middle zone [2]. Proteoglycans (PG’s) constitute 20–30% of the tissue dry weight. PG’s are lowest in the superficial zone, and highest in the middle zone. Although the PG content is lower in the deep zone than in the middle zone, the fixed charge density (FCD) is highest in the deep zone [3]. Apart from AC composition, its structure is also depth-dependent. In the superficial zone collagen fibers are densely packed, and are arranged parallel to the articular surface. In the middle zone collagen fibers are more randomly arranged. In the deep zone, the collagen fibers have their largest diameters and are arranged perpendicular to the subchondral bone (Fig. 1) [4].


Sign in / Sign up

Export Citation Format

Share Document