Vortex Shedding Frequencies of the Flow through Two-Row Banks of Tubes

1969 ◽  
Vol 11 (5) ◽  
pp. 498-502 ◽  
Author(s):  
A. R. J. Borges

This paper deals with the problem of vortex shedding from parallel rows of circular cylinders of equal diameter set normal to an airstream. A single row of cylinders is first discussed. The experimental results show that when the lateral spacing between the axes of two adjacent cylinders is less than two diameters the flow downstream of the row does not exhibit any obvious single dominant frequency of vortex shedding. The flow set up by two rows of cylinders is next considered for both tandem and staggered arrangements of the cylinders. The sets of measured values reported are complete in the sense that they cover the whole range of spacings for which a dominant frequency of vortex shedding could be measured. The Reynolds numbers of these tests correspond to the high subscritical range for a cylinder in isolation.

2000 ◽  
Vol 123 (2) ◽  
pp. 404-407 ◽  
Author(s):  
C. Cui ◽  
X. Y. Huang ◽  
C. Y. Liu

An experimental study was conducted on the heat transfer characteristics of flow through a porous channel with discrete heat sources on the upper wall. The temperatures along the heated channel wall were measured with different heat fluxes and the local Nusselt numbers were calculated at the different Reynolds numbers. The temperature distribution of the fluid inside the channel was also measured at several points. The experimental results were compared with that predicted by an analytical model using the Green’s integral over the discrete sources, and a good agreement between the two was obtained. The experimental results confirmed that the heat transfer would be more significant at leading edges of the strip heaters and at higher Reynolds numbers.


2014 ◽  
Vol 751 ◽  
pp. 1-37 ◽  
Author(s):  
Ming Zhao ◽  
Liang Cheng

AbstractOscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers is simulated numerically by solving the two-dimensional Navier–Stokes (NS) equations using a finite-element method (FEM). The aim of this study is to identify the flow regimes of the two-cylinder system at different gap arrangements and Keulegan–Carpenter numbers (KC). Simulations are conducted at seven gap ratios $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ ($G=L/D$ where $L$ is the cylinder-to-cylinder gap and $D$ the diameter of a cylinder) of 0.5, 1, 1.5, 2, 3, 4 and 5 and KC ranging from 1 to 12 with an interval of 0.25. The flow regimes that have been identified for oscillatory flow around a single cylinder are also observed in the two-cylinder system but with different flow patterns due to the interactions between the two cylinders. In the side-by-side arrangement, the vortex shedding from the gap between the two cylinders dominates when the gap ratio is small, resulting in the gap vortex shedding (GVS) regime, which is different from any of the flow regimes identified for a single cylinder. For intermediate gap ratios of 1.5 and 2 in the side-by-side arrangement, the vortex shedding mode from one side of each cylinder is not necessarily the same as that from the other side, forming a so-called combined flow regime. When the gap ratio between the two cylinders is sufficiently large, the vortex shedding from each cylinder is similar to that of a single cylinder. In the tandem arrangement, when the gap between the two cylinders is very small, the flow regimes are similar to that of a single cylinder. For large gap ratios in the tandem arrangement, the vortex shedding flows from the gap side of the two cylinders interact and those from the outer sides of the cylinders are less affected by the existence of the other cylinder and similar to that of a single cylinder. Strong interaction between the vortex shedding flows from the two cylinders makes the flow very irregular at large KC values for both side-by-side and tandem arrangements.


1993 ◽  
Vol 248 ◽  
pp. 267-296 ◽  
Author(s):  
Kimon Roussopoulos

This paper describes experiments undertaken to study in detail the control of vortex shedding from circular cylinders at low Reynolds numbers by using feedback to stabilize the wake instability. Experiments have been performed both in a wind tunnel and in an open water channel with flow visualization. It has been found that feedback control is able to delay the onset of the wake instability, rendering the wake stable at Reynolds numbers about 20% higher than otherwise. At higher flow rates, however, it was not possible to use single-channel feedback to stabilize the wake - although, deceptively, it was possible to reduce the unsteadiness recorded by a near-wake sensor. When control is applied to a long span only the region near the control sensor is controlled. The results presented in this paper generally support the analytical results of other researchers.


1989 ◽  
Vol 199 ◽  
pp. 441-469 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

A better understanding of the transition process in open flows can be obtained through identification of the possible asymptotic response states in the flow. In the present work, the asymptotic states in laminar wakes behind circular cylinders at low supercritical Reynolds numbers are investigated. Direct numerical simulation of the flow is performed, using spectral-element techniques. Naturally produced wakes, and periodically forced wakes are considered separately.It is shown that, in the absence of external forcing, a periodic state is obtained, the frequency of which is selected by the absolute instability of the time-average flow. The non-dimensional frequency of the vortex street (Strouhal number) is a continuous function of the Reynolds number. In periodically forced wakes, however, non-periodic states are also possible, resulting from the bifurcation of the natural periodic state. The response of forced wakes can be characterized as: (i) lock-in, if the dominant frequency in the wake equals the excitation frequency, or (ii) non-lock-in, when the dominant frequency in the wake equals the Strouhal frequency. Both types of response can be periodic or quasi-periodic, depending on the combination of the amplitude and frequency of the forcing. At the boundary separating the two types of response transitional states develop, which are found to exhibit a low-order chaotic behaviour. Finally, all states resulting from the bifurcation of the natural state can be represented in a two-parameter space inside ‘resonant horn’ type of regions.


Author(s):  
Bjo¨rn Selent ◽  
Craig Meskell

The unsteady flow through normal triangular tube arrays is simulated applying the Cloud-in-Element method. The scheme realizes time-stepping via a Langrangian vortex method using random-walk to model diffusion in the flow. The vortex particle velocities are computed on a fixed unstructured grid at each time step. Zero normal velocity on solid boundaries is enforced by a source panel method and zero slip is achieved by introducing vorticity into the flow at each time step. Simulations have been carried out for normal triangular tube arryas with pitch ratios of 1.32, 1.61, 2.08, 2.63 at Reynolds numbers of 1000, 3000, 5000 and 10000. Single vortex shedding frequencies have been observed for the smaller pitch ratios while two Strouhal numbers are obtained for the sparse arrays. This is consistent with experimental data in the literature. Also the overall flow structures were captured successfully.


1965 ◽  
Vol 7 (4) ◽  
pp. 431-439 ◽  
Author(s):  
P. R. Owen

The origin of the vibration generated within an extensive bank of tubes that run transverse to the direction of gas flow through a boiler shell and whose movement is small enough in amplitude to have no perceptible effect on the motion of the gas, is examined on the supposition that, sufficiently deep inside the bank, the flow is essentially turbulent and, except for a general drift through the bank, exhibits no regular feature. Conditions of this kind are thought to be appropriate to certain types of heat exchanger used in nuclear power stations and operating at large Reynolds numbers. The source of vibration, either structural or gaseous, is associated with the randomly fluctuating forces imposed on the tubes by the turbulent eddies, and a simple argument is put forward to account approximately for the length scale of the most energetic of these eddies and consequently the frequency with which they encounter the tubes. It is further argued that the tubes are aerodynamically discriminating in their force response which is thereby narrowed spectrally and confined to the neighbourhood of the frequency corresponding to the energetic eddies. The subsequent structural or acoustic response is even more sharpened spectrally, owing to the small damping inherent in the system. A relation between the dominant frequency of the force fluctuations, the gas velocity and the geometrical arrangement of the tubes, that emerges from the argument, agrees in form with published observations of the sound emission from boilers under resonant conditions. A disposable constant appearing in the relation is also satisfactorily predicted in order of magnitude. The analysis applies to only one possible form of the vibration phenomenon; other forms, aero-elastic and vortex-excited, may appear under suitable conditions dependent upon Reynolds number, structural stiffness and damping.


1995 ◽  
Vol 117 (2) ◽  
pp. 219-226 ◽  
Author(s):  
D. M. Rooney ◽  
J. Rodichok ◽  
K. Dolan

Wind tunnel tests were undertaken at subcritical Reynolds numbers to determine the vortex shedding characteristics behind a pair of finite circular cylinders at distances from one to six diameters apart and at all angles to one another. In addition, individual finite cylinders with aspect ratios 0.67 ≤ L/D ≤ 11.33 were examined to determine the effect of aspect ratio on shedding frequency, and to measure the frequency of the tip vortex when it is present. Aspect ratio was found to be a significant factor in the difference between shedding frequencies of the two cylinders at oblique angles. It was also found that “lock-on” of the two frequencies occurred when longer aspect ratio cylinders were upstream of shorter ones, but not in the reverse case.


1976 ◽  
Vol 1 (15) ◽  
pp. 134 ◽  
Author(s):  
Turgut Sarpkaya

This paper presents the results of an extensive experimental investigation of the in-line and transverse forces acting on sand-roughened circular cylinders placed in oscillatory flow at Reynolds numbers up to 1,500,000, Keulegan-Carpenter numbers up to 100, and relative roughnesses from 1/800 to 1/50. The drag and inertia coefficients have been determined through the use of the Fourier analysis and the least squares method. The transverse force (lift) has been analysed in terms of its maximum and root-mean-square values. In addition, the frequency of vortex shedding and the Strouhal number have been determined. The results have shown that all of the coefficients cited above are functions of the Reynolds number, Keulegan-Carpenter number, and the relative roughness height. The results have also shown that the effect of roughness is quite profound and that the drag coefficients obtained from tests in steady flow are not applicable to harmonic flows even when the loading is predominantly drag.


Sign in / Sign up

Export Citation Format

Share Document