Finite Aspect Ratio Effects on Vortex Shedding Behind Two Cylinders at Angles of Incidence

1995 ◽  
Vol 117 (2) ◽  
pp. 219-226 ◽  
Author(s):  
D. M. Rooney ◽  
J. Rodichok ◽  
K. Dolan

Wind tunnel tests were undertaken at subcritical Reynolds numbers to determine the vortex shedding characteristics behind a pair of finite circular cylinders at distances from one to six diameters apart and at all angles to one another. In addition, individual finite cylinders with aspect ratios 0.67 ≤ L/D ≤ 11.33 were examined to determine the effect of aspect ratio on shedding frequency, and to measure the frequency of the tip vortex when it is present. Aspect ratio was found to be a significant factor in the difference between shedding frequencies of the two cylinders at oblique angles. It was also found that “lock-on” of the two frequencies occurred when longer aspect ratio cylinders were upstream of shorter ones, but not in the reverse case.

1982 ◽  
Vol 104 (1) ◽  
pp. 72-80 ◽  
Author(s):  
D. M. Rooney ◽  
R. D. Peltzer

Circular cylinders of aspect ratio L/D=17 were tested in a wind tunnel under a wide range of spanwise upstream velocity shears. The correlation between upstream shear, characterized by a nondimensional shear parameter β, and the spanwise lengths of constant vortex shedding frequency was sought for both smooth and rough cylinders in transitional Reynolds numbers flows. Among the significant conclusions are that the spanwise range in shedding frequencies decreases with increasing roughness, the average constant shedding frequency cell length increases with increasing roughness for constant shear, and the average cell length decreases with increasing upstream shear for constant roughness.


2003 ◽  
Vol 27 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Edmond Ismaili ◽  
Yasunari Kamada ◽  
Takao Maeda

Wind tunnel results are reported concerning the effects of blade aspect ratio and Reynolds number on the performance of a horizontal axis wind turbine (HAWT) with Mie-type1 tip attachments. The flow behaviour around the blade tips and the Mie-type tip vanes is presented. Detailed surface oil film visualization and velocity measurements around the blade tips, with and without Mie vanes, were obtained with the two-dimensional, Laser-Doppler Velocimetry method. Experiments were performed with rotors having blades with different aspect ratio and operating at different Reynolds numbers. The properties of the vortices generated by the Mie vanes and the blade tips were carefully studied. It was found that increased power augmentation by Mie vanes is achieved with blades having smaller aspect ratio and smaller Reynolds number.


Author(s):  
Amber Donaldson ◽  
John C. Vaccaro ◽  
David M. Rooney

Abstract An experimental wind tunnel study was performed to assess the effect of aspect ratio and rotational speed of circular cylinders of varying diameter on the flow patterns behind the cylinders in the presence of a uniform upstream crossflow. Six circular cylinders of constant length but different diameters, producing aspect ratios 6 ≤ AR ≤ 32 were examined at a single upstream velocity such that the Reynolds number varied between 1920 ≤ Re ≤ 10240. Rotational speeds from stationary up to 3600 rpm were applied to the cylinders, so that the maximum relative velocity α = πfD/U∞ = 0.80. Mean velocity profiles were measured three diameters downstream of the cylinder axis at 6 equidistant locations, and PSD power spectral density were generated for 26 equidistant locations along the cylinder, to create a comprehensive record of spanwise variations under all rotational conditions. For the highest aspect ratio tested, the wake velocity profiles were independent of rotational speed at all spanwise locations, whereas at lower aspect ratios, the maximum velocity defect diminished with increasing rotational speed along most of the span and became asymmetric near the free end. Two distinct shedding cells were found only for a cylinder with an aspect ratio of twelve at three relative spin rates of 0.067, 0.27, and 0.4. In cases where only a single cell existed, increased rotational speed produced a higher vortex shedding frequency on a given aspect ratio cylinder.


Author(s):  
David M. Rooney ◽  
John C. Vaccaro ◽  
Rafael Smijtink

Abstract Hot-wire measurements were taken in the wake of ten finite length circular cylinders, six of which were also tapered, in a uniform flow in a low speed wind tunnel. The Reynolds number based on mean cylinder diameter ranged from 2100 ≤ Re ≤ 5500, the aspect ratio (AR) of the cylinders varied from 16 ≤ AR ≤ 64, and the taper ratio (RT) varied from 21.3 ≤ RT ≤ 96. The vortex shedding along the spans of the cylinders coalesced into discrete cells, the range of Strouhal numbers and the number of cells being a function of the cylinder aspect ratio and taper ratio. It was found that the number of discrete cells is linearly related to a cylinder geometry ratio (CGR) defined as CGR = AR(1 + AR/RT).


Author(s):  
Jorge Silva-Leon ◽  
Andrea Cioncolini

Abstract This paper describes an experimental study of the spanwise vortex shedding frequencies from cantilever flexible filaments which are bent (reconfigured) when exposed to air crossflow. At a reduced velocity of approximately U* = 1500 (based on filament diameter) the filaments started to vibrate in the inline direction. Hot-wire anemometry was thus employed to investigate the wake flow of filaments of three aspect ratios (L/D = 38, 80, and 113) at Reynolds numbers Re < 300. Despite the large relative inclination angles between the filament and the flow direction, the vortex shedding frequency measured along the span of the filaments remained close to those of a cylinder in pure crossflow. Moreover, it was found that as the aspect ratio (axial length) of the filaments was increased, vortex shedding lost coherence towards the free end of the filaments, whereas this was not the case for the shortest aspect ratio filament currently tested. This is thought to be due to the interaction between the crossflow vortex shedding and the axial flow component developing along the wake of the inclined filaments. Through comparisons with stiff inclined wires it was confirmed that the spanwise vortex shedding behaviors observed (frequency and coherence) were not modulated by the motions of the filaments.


1988 ◽  
Vol 196 ◽  
pp. 1-26 ◽  
Author(s):  
K. Lam ◽  
W. C. Cheung

This paper describes how the flows around three equal circular cylinders arranged in an equilateral-triangular manner interact at different angles of incidence α and spacing ratios l/d. Some vortex-shedding-frequency data evaluated from flow visualization experiments conducted at Reynolds numbers of 2.1 × 103 and 3.5 × 103, based on the diameter of a single cylinder, using a dye -injection technique, are presented. In order to provide additional insight to the understanding of the flow structure around this particular cylinder array, some photographs indicating the typical flow patterns for various arrangements are also presented. The investigation indicates that the flows interact in a complex fashion for spacing ratios smaller than 2.29 and it also reveals that, at this range of spacing ratios and at α = 0°, bistable flow characteristic exists. Moreover, for l/d approximately smaller than 4.65 there always exists an angle at which the vortex shedding behind an upstream cylinder is suppressed by a nearest downstream cylinder. This angle is found not to remain constant but increases as the spacing ratio increases. For illustration and comparisons, some numerical results obtained from the application of the surface-vorticity method have also been presented.


2007 ◽  
Vol 23 (2) ◽  
pp. 107-116 ◽  
Author(s):  
J. K. Tu ◽  
J. J. Miau ◽  
Y. J. Wang ◽  
G. B. Lee ◽  
C. Lin

AbstractExperiments were made with 14 MEMS sensors situated along the span of a circular cylinder whose aspect ratio was 5. The signals of the MEMS sensors were sampled simultaneously as flow over the cylinder at Reynolds numbers of 104. The results of Wavelet analysis of the signals indicate that the percentage of time during which strong three-dimensionality of vortex shedding was detected is about 10%.As noted, strong three-dimensionality took place when the fluctuating amplitude of the signals was severely modulated and the vortex shedding frequency reduced appeared abnormally high or low. Further noted was that the addition of a splitter plate of 0.5 or one diameter in length behind the circular cylinder was not able to suppress the three-dimensionality of the flow.


1982 ◽  
Vol 104 (4) ◽  
pp. 518-522 ◽  
Author(s):  
F. Angrilli ◽  
S. Bergamaschi ◽  
V. Cossalter

In this paper the influence of a wall on vortex shedding frequency, geometrical pattern, and velocity field are investigated. Frequency measurements were carried out with three circular cylinders at Reynolds numbers of 2860, 3820, and 7640. Mean and fluctuating velocities at several traverses were also measured at Re = 3820 both for an isolated cylinder and for an arrangement with a gap from the wall equal to one cylinder diameter. The modifications of the wake pattern are shown in several figures. It is also shown that the proximity of the wall induces a slight increase of vortex shedding frequency.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Sign in / Sign up

Export Citation Format

Share Document