Summary 1: The Influence of Engine Component Inertia Forces on Minimum Oil Film Thickness in Connecting Rod Big-End Bearings

Author(s):  
J. F. Booker ◽  
F. A. Martin

when Designing steadily loaded bearings the designer can usually predict the position of the journal centre quite easily with the aid of one of the many load carrying capacity/eccentricity relationships available. With dynamically loaded bearings, however, the journal path will vary in magnitude and direction throughout the loading cycle and one of the designer's interests is in the trends of maximum eccentricity ratio and the corresponding oil film thickness for various bearing and engine conditions. From experience with journal path predictions for big-end bearings it has been found that the eccentricity ratio in the bearing due to the peak firing load seldom exceeds that obtained by the inertia load loop (although this load is smaller) and therefore, as a first approximation, it is thought justifiable to neglect the gas forces. The results of this inertia study (numerical solution) applied to big-end bearings are presented in a general graphical form. Further work can be carried out on the same basis for main bearings, but this is more difficult to present in a general fashion as there are many more variables to consider, such as the phasing and magnitude of the crank out of balance and the firing order. This report therefore concentrates on the first step, i.e. that of big-end bearings.

1966 ◽  
Vol 181 (1) ◽  
pp. 749-764 ◽  
Author(s):  
F. A. Martin ◽  
J. F. Booker

In the design of dynamically loaded bearings, the journal eccentricity will vary in magnitude and direction throughout the loading cycle. One of the designer's interests is in the trends of maximum eccentricity ratio and the corresponding oil film thickness for various bearing and engine conditions. From experience with journal eccentricity predictions for big-end bearings it has been found that the eccentricity ratio in the bearing due to the peak firing load seldom exceeds that due to the inertia load alone (although this load is smaller). Therefore, as an approximation, it is thought justifiable to neglect the gas forces. The maximum eccentricity ratio for numerous inertia load cycles was computed based on the numerical mobility method of solution (1)†; because of its simplicity and as only trends were required, the short bearing solution was used. The results of this study applied to big-end bearings show how the reciprocating and rotating masses affect the maximum eccentricity ratio. Also the effect of the ratio of crank radius to con-rod length is investigated, as is the effect of change in bearing clearance. A useful general-purpose graph is presented which will enable the designer to estimate comparative values of minimum oil film thickness over a practical range of bearing operating conditions. It is emphasized that the value of oil film thickness by itself may not be very helpful if used in absolute terms, as its correctness will depend on the assumptions made. The general results will, however, be useful if used as a comparator, and should give some guidance on how to improve the performance of connecting-rod big-end bearings.


1988 ◽  
Vol 110 (4) ◽  
pp. 699-703 ◽  
Author(s):  
Awny Y. Attia ◽  
Ahmed M. M. El-Bahloul

The paper presents the results of an experimental investigation carried out at Mansoura University Laboratories aiming at studying the effect of change of speed, oil viscosity, and helix angle on the load carrying capacity of the oil film. A three pairs of test gears of 6 DP, 91.5 mm pitch diameter with 22.3, 33.6 and 42.25 deg helix angles were run in power circulating test rig at 100 to 3000 r.p.m. speeds and transmitting tooth load ranging from 185 to 1090 Kp. The test gears were lubricated with oils of 200, 462, and 653 cSt at 40°C kinematic viscosities. The oil film thicknesses between contacting teeth were measured by measuring the changes in capacitance between test gears and transferred to linear dimensions by calibration curves drawn by knowing the changes in capacitance through the gaps between teeth of values known through the amount of backlash. The experimental results show that; Oil film thickness decreases with tooth load, while increases with speed and viscosity of the lubricant. Oil film thickness versus helix angle give an inversed parabola for the smallest and medium tooth loads, while oil film thickness decreases with increasing the helix angle under increased tooth loads. Load carrying capacity increases with speeds and viscosity of the lubricant while decreases with increasing the helix angle.


Author(s):  
T S Chennabasavan ◽  
R Raman

In the theoretical analysis of porous bearings the journal has so far been assumed to be ideal, that is perfectly cylindrical. In the present analysis the geometric irregularities of the journal, such as circumferential undulations and barrel/bellmouth shapes, are taken into account. The permeability variation along the length of the bearing as found in commercial bearings has also been taken into account. The present analysis reveals that, at the critical Sommerfeld number, the friction is very low compared to the very high value for an ideal journal. The present analysis also reveals that the friction and the attitude angle are lower for any Sommerfeld number and that the load-carrying capacity is lower for any eccentricity ratio than that for an ideal journal.


2013 ◽  
Vol 690-693 ◽  
pp. 1999-2002
Author(s):  
Fan Ming Meng ◽  
Tao Yang ◽  
Tao Long

The influence of dimples on the inner surface of big end bearing in internal combustion engine (ICE) on tribological performances of the bearing was investigated based on Navier-Strokes equation and other associated equations. In doing so, the CFD modulus in the software ANSYS12 version is used to analyze the dimple effect on the tribological performances of the bearing using two-way fluid-solid coupling algorithm. Some mechanisms are revealed about the dimple effect on the load-carrying capacity and friction coefficient of oil film, and the deformation and stress for the textured big end bearing.


1972 ◽  
Vol 94 (1) ◽  
pp. 44-48 ◽  
Author(s):  
E. B. Qvale ◽  
F. R. Wiltshire

The effects of prescribed viscosity variations across a hydrodynamic lubricating film are studied. The film is strictly one dimensional and end effects are neglected. The viscosity variations are given by three families of curves. The considerable decreases (in the limit 100 percent) and occasional increases in the coefficient of friction that can occur for constant film thickness and load-carrying capacity are evaluated and the results are presented in terms of parametric curves. Important physical situations where these viscosity variations may be observed or produced are described.


1979 ◽  
Vol 101 (2) ◽  
pp. 190-197 ◽  
Author(s):  
B. Fantino ◽  
J. Frene ◽  
J. Du Parquet

The effect of the deformation of an automotive connecting-rod on the oil film characteristics are studied. The simultaneous elastic deformation and pressure distribution are obtained by iterative methods in steady-state conditions under realistic speeds and loads (5500 rpm, 25,000 N). Plane elasticity relations are used in this study. The following parameters are investigated: —bearing characteristics: bearing thickness B and bearing clearance C, —operating conditions: journal speed N and applied load W, —lubricant: viscosity μ0 and piezoviscous coefficient α. As a result of the deformation, the maximum pressure and the attitude angle are decreased and the relative eccentricity is greatly increased. The minimum oil film thickness is slightly but systematically decreased. The piezoviscosity effect is noticeable only at high loads: it increases slightly the oil film thickness and the maximum pressure. An empirical dimensional equation for the minimum oil film thickness hm is derived numerically for the bearing considered. Thus: hm∼μ0NW0.5(1+0.06108α)B0.12C0.09


1979 ◽  
Vol 101 (4) ◽  
pp. 444-450 ◽  
Author(s):  
V. Kamala

This paper analyzes the load-carrying capacity of the hybrid air lubricated journal bearing. Assuming a small eccentricity ratio, a first order perturbation solution is obtained. The air is fed to the bearing through inherent restrictor with feeding holes distributed around the circumference in one, two, and three feeding planes (Fig. 1). The number of feeding holes in each plane is sufficiently large to permit the feeding planes being treated as the line sources. The results are given for the load-carrying capacity and the attitude angle. A comparative study is made of the three types of gas feeding arrangements.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Vilmos V. Simon

In this study, an optimization methodology is proposed to systematically define the optimal tooth modifications introduced by head-cutter geometry and machine-tool settings to minimize the influence of misalignments on the elastohydrodynamic (EHD) lubrication characteristics in face-hobbed spiral bevel gears. The goal is to simultaneously maximize the EHD load-carrying capacity of the oil film and to minimize power losses in the oil film when different misalignments are inherent in the gear pair. The proposed optimization procedure relies heavily on the EHD lubrication analysis developed in this paper. The core algorithm of the proposed nonlinear programming procedure is based on a direct search method. Effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. A drastic increase in the EHD load-carrying capacity of the oil film and a reduction in the power losses in the oil film were obtained.


1989 ◽  
Vol 111 (3) ◽  
pp. 440-444 ◽  
Author(s):  
M. M. Khonsari ◽  
S. H. Wang ◽  
Y. L. Qi

A theoretical study of the effectiveness of solid particles dispersed in oil in the elastohydrodynamic line contact is presented. The analysis includes the variation of the viscosity and density of the lubricant as a function of pressure. The deformation of solid particles and that of the bounding surfaces are taken into consideration. Results are presented for the variation of the film thickness and the load carrying capacity as a function of the particle size, concentration, and properties of various types of particles.


Sign in / Sign up

Export Citation Format

Share Document