Apparent (Dynamic) Viscosity and Yield Strength of Greases after Prolonged Shearing at High Shear Rates

Author(s):  
G. J. Scholten

Where sealed, grease-lubricated sleeve and ball-bearings are used with once-only lubrication for life, the rheological properties of the grease as a function of the service life are important in connection with the load-carrying capacity and the sealing capacity. To calculate the bearing capacity of a journal or spiral-groove bearing it is important to know the relation between the rate of shear and the shear stress in the lubricating film, i.e. the apparent viscosity, as a function of time. For sealing of the bearing the value of the yield strength of the grease, after shearing, is also important as a function of time. To measure these two magnitudes, a rotating-cylinder type of viscometer and a cylinder type of yield strength meter have been constructed. The viscometer permits the determination of viscosity up to shear rates of about 5 × 105 s-1, while the yield strength meter can ascertain the ultimate strength, after stressing, with shear rates of up to 105 s-1—both being determined within the temperature range 25–125°C. A number of commercially available greases have been tested.

2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Leszek Czechowski

The paper deals with an examination of the behaviour of glued Ti-Al column under compression at elevated temperature. The tests of compressed columns with initial load were performed at different temperatures to obtain their characteristics and the load-carrying capacity. The deformations of columns during tests were registered by employing non-contact Digital Image Correlation Aramis® System. The numerical computations based on finite element method by using two different discrete models were carried out to validate the empirical results. To solve the problems, true stress-logarithmic strain curves of one-directional tensile tests dependent on temperature both for considered metals and glue were implemented to software. Numerical estimations based on Green–Lagrange equations for large deflections and strains were conducted. The paper reveals the influence of temperature on the behaviour of compressed C-profile Ti-Al columns. It was verified how the load-carrying capacity of glued bi-metal column decreases with an increase in the temperature increment. The achieved maximum loads at temperature 200 °C dropped by 2.5 times related to maximum loads at ambient temperature.


1990 ◽  
Vol 112 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Cz. M. Rodkiewicz ◽  
K. W. Kim ◽  
J. S. Kennedy

An operating tilting-pad thrust bearing generates a fore-region which is responsible for maintaining, at the bearing entrance, a pressure which is higher than the ambient pressure. This entrance pressure, in the presented analysis, is obtained by applying to the fore-region the momentum integral theorem. The solution of the lubricating film region is then obtained by using this modified inlet pressure. This solution yields the pressure distribution, the load carrying capacity, the film ratio and the frictional force for several values of the modified Reynolds number and various pivot positions. The analysis shows that there is a significant influence of the fore-region pressure on the bearing performance and that to properly design efficient tilting-pad bearing this effect should be taken into consideration.


2010 ◽  
Vol 16 (3) ◽  
pp. 352-362 ◽  
Author(s):  
Zdeněk Kala ◽  
Libor Puklický ◽  
Abayomi Omishore ◽  
Marcela Karmazínová ◽  
Jindřich Melcher

The presented paper deals with the stochastic analysis of the ultimate limit states of steel‐concrete building members. The load carrying capacity of steel‐concrete columns, comprising of steel profiles encased in high strength concrete, in compression is analyzed. The first part of the paper lists assumptions for the determination of the theoretical load carrying capacity of the column. Principles of elasticity and plasticity are used to determine stresses in the concrete and steel sections. Statistical characteristics of input material and geometrical imperfections are listed. Results of the theoretical analysis are then compared with results of experimental research. Statistical characteristics of obtained results of the theoretical analysis were verified using statistical characteristics obtained from experimental research. Numerical simulation LHS and Monte Carlo methods, which take into account the influences of variability of input imperfections, were employed. The influence of the utilization of the plastic reserve in the determination of the load carrying capacity of the analysed strut is shown. The influence of the initial geometric imperfections of initial strut curvature on the load carrying capacity is also presented. Santrauka Straipsnyje pateikta plienbetonio pastatu elementu didžiausiu ribiniu būkliu stochastine analize, analizuojama plienbetonio kolonu, sudarytu iš plieniniu profiliuočiu, padengtu didelio stiprio betonu, laikomoji galia gniuždant. Pirmoje straipsnio dalyje išvardytos kolonos teorines laikomosios galios nustatymo prielaidos. Tamprumo ir plastiškumo principai taikyti itempiams betono ir plieno skerspjūviuose nustatyti. Nustatytos medžiagu ir geometriniu defektu statistines charakteristikos, teorines analizes rezultatai palyginti su eksperimentiniu tyrimu rezultatais. Teorines analizes metu gautu rezultatu statistines charakteristikos patikrintos taikant iš eksperimentiniu tyrimu gautus statistinius rodiklius. Pritaikytas skaitinis modeliavimas LHS ir Monte Karlo metodais, kurie ivertina pradiniu defektu kintamumo itaka. Parodyta plastiškumo atsargos naudojimo itaka, nustatant analizuojamojo statramsčio laikomaja galia, pateikta pradinio statramsčio išlinkio pirminiu geometriniu defektu itaka laikomajai galiai.


2009 ◽  
Vol 1 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Libor Puklický ◽  
Zdeněk Kala

The paper deals with the fuzzy analysis of the ultimate limit state of a steel strut with an encased web in compression. The first part of the paper lists presumptions required for the determination of the theoretical load carrying capacity for the column. Stresses in the concrete and steel sections are determined according to the principles of elasticity. The ultimate limit state is given as the limit stress attained in the most stressed section of either the steel or concrete section. A general extended principle, which takes into account the epistemic uncertainty of input parameters, was utilized for the conducted analysis.


2019 ◽  
Vol 105 ◽  
pp. 76-84
Author(s):  
NADEŽDA LANGOVÁ ◽  
PAVOL JOŠČÁK

Mechanical Properties of Confirmat Screws Corner Joints Made of Native Wood and Wood-Based Composites. The aim of this investigation was to design and determine the mechanical properties of confirmat screws corner joints made of native wood and wood-based composites. The objective of the study was to ascertain the stiffness and load carrying capacity of joints that differed in the diameter and length of confirmat type screw, as well as in the kind of materials. The results include statistical processing of measured and calculated data, and evaluation of the influence of selected factors on mechanical properties. The results are applied to the calculation of the characteristic values of the properties and to the determination of the equations for their calculation for other values of the selected factors. The characteristic values are used for the evaluation of the joints according to the limit state method.


1972 ◽  
Vol 94 (1) ◽  
pp. 44-48 ◽  
Author(s):  
E. B. Qvale ◽  
F. R. Wiltshire

The effects of prescribed viscosity variations across a hydrodynamic lubricating film are studied. The film is strictly one dimensional and end effects are neglected. The viscosity variations are given by three families of curves. The considerable decreases (in the limit 100 percent) and occasional increases in the coefficient of friction that can occur for constant film thickness and load-carrying capacity are evaluated and the results are presented in terms of parametric curves. Important physical situations where these viscosity variations may be observed or produced are described.


Sign in / Sign up

Export Citation Format

Share Document