Finite Element Analysis of Four-Roll Pass Cold Rolling

Author(s):  
S W Wen ◽  
P Hartley ◽  
I Pillinger ◽  
C E N Sturgess

This paper presents a study of the mechanics of deformation of the four-roll pass cold rolling using an elastic-plastic finite element program. This process has been developed at the Anshan Institute of Iron and Steel Technology, People's Republic of China, where a new four-roll pass small section cold rolling mill has been built. The initial finite element analysis has been carried out for the rolling of 8 mm square section bar from 10 mm diameter round stock under dry friction conditions. The results show clearly how the areas of plastic deformation develop during the rolling process. The distributions of the generalized stress and the generalized plastic strain, both on the longitudinal symmetrical plane and on the transverse cross-sections of the workpiece, have been obtained, and the pressure distribution along the arc of contact has been determined. In addition, the roll separation force and the pass elongation of the workpiece predicted by the finite element program have been compared with the corresponding values measured in experiments when rolling 6.5 mm square section bar from 8 mm round material with machine oil lubrication. Good agreement has been obtained.

1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


2012 ◽  
Vol 594-597 ◽  
pp. 2723-2726
Author(s):  
Wen Shan Lin

In the present study, the constitutive law of the deformation theory of plasticity has been derived. And that develop the two-dimensional and three-dimensional finite element program. The results of finite element and analytic of plasticity are compared to verify the derived the constitutive law of the deformation theory and the FEM program. At plastic stage, the constitutive laws of the deformation theory can be expressed as the linear elastic constitutive laws. But, it must be modified by iteration of the secant modulus and the effective Poisson’s ratio. Make it easier to develop finite element program. Finite element solution and analytic solution of plasticity theory comparison show the answers are the same. It shows the derivation of the constitutive law of the deformation theory of plasticity and finite element analysis program is the accuracy.


Fibers ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 52 ◽  
Author(s):  
Amgad Elbehiry ◽  
Marwan Mostafa

One of the challenges of the century is to reach compatibility between the required resistance and the usage of lightweight building materials that may negatively affect the mechanical properties. Natural fibers nowadays are used as enhancers in the industrial field. Hence, the fibers contribute by giving an ideal solution to improve mechanical proprieties of the structural elements such as tensile and impact strength. In previous studies, the use of natural fibers as reinforcement in construction materials has increased. Natural fibers have a lot of characteristics such as being strong, lightweight, inexpensive, and eco-friendly. This paper aims to investigate the performance of banana fiber bars (BFB) as reinforced material. Through this study, the development and characterization of natural fibers-based composite beams were observed. After the beams were designed, several types of finite element analysis were conducted using ‘ANSYS’ nonlinear finite element program under one-point loading. Results show good correlations between experimental and predicted results.


Author(s):  
K W Dalgarno ◽  
A J Day ◽  
T H C Childs

This paper describes a finite element analysis of a synchronous belt tooth under operational loads and conditions with the objective of obtaining a greater understanding of belt failure by tooth root cracking through an examination of the strains within the facing fabric in the belt. The analysis used the ABAQUS finite element program, and was based on a two-dimensional finite element model incorporating a hyperelastic material model for the elastomer compound. Contact between the belt tooth face and the pulley groove was modelled using surface interface elements which allowed only compression and shear forces at the contact surfaces. It is concluded that the critical strains in the facing fabric of the belt, and therefore the belt life, are largely determined by the tangential loading condition on the belt teeth.


2011 ◽  
Vol 250-253 ◽  
pp. 1050-1053
Author(s):  
Jun Ho Shin ◽  
Nam Yong Jee ◽  
Leslie J. Struble ◽  
R. James Kirkpatrick

The objective of this study is to develop a numerical model based on microstructural images of concrete and fundamental material properties of each constituent of concrete subjected to alkali-silica reaction (ASR). A microstructure-based finite element approach is employed directly to analyze the mechanical response of concrete to ASR. The modeling work involves acquiring and processing of microstructural images of specimens suffering from ASR using scanning electron microscopy, and implementing finite element program to analyze the microstructural images. The formulation of this model is based on pressure caused by the ASR product and on properties such as Young’s modulus and Poisson’s ratio. The finite element analysis program used to simulate structural behavior of structures attacked by ASR is object-oriented finite element developed at National Institute of Standards and Technology. The numerical results from this model are compared with experimental data, which have been measured using ASTM standard test C1260. The results show that the development and widening of cracks by formation and swelling of ASR gel cause the majority of expansion of mortar specimens rather than elastic elongation due to gel swelling.


2013 ◽  
Vol 351-352 ◽  
pp. 264-269 ◽  
Author(s):  
Ming Chen ◽  
Zhan Ke Liu ◽  
Zi Qi He

A total of 18 cold-formed lipped channel columns with web stiffener were analyzed by using the finite element program of ANSYS. Varying length and axial force eccentricity were concerned to observe the buckling modes, load carrying capacities and deformability of the channel section columns.All the results can be the reference for later experimental study.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhangxin Guo ◽  
Zhiqiang Yu ◽  
Shiyi Wei ◽  
Guoliang Qi ◽  
Yongcun Li ◽  
...  

PurposeThe cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Design/methodology/approachFinite element method is employed in this work.FindingsThe simulated results match the experimental results well, which demonstrates the finite element analysis models are reliable. Compared with the one- and two-dimensional finite element analysis, temperature and degree of cure can be calculated at any point within composite structures in the present simulation analysis. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Originality/valueA coupled thermokinetic simulation of the liquid composite molding process based on a three-dimensional finite element method is presented. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.


2014 ◽  
Vol 638-640 ◽  
pp. 115-119
Author(s):  
Qing Wen Liu ◽  
Fu Qiang Wu

On the basis of the joint model experiment, the non-linear performance of joints is analysed by using finite element program. The concrete stress distribution, stirrups stress and dangerous area of joints with spread-ended beams are discussed. Finite element analysis shows that effective prestressing tendons through the joint core region play a beneficial role in concrete and can improve the compressive strengths of concrete, and help to improve the shear strength of joints. Finally, according to experiments and theoretical analysis, the beginning of the haunched region is the dangerous area of joint. In order to avoid concrete tension failure when exerting prestress, the beginning of the haunched region must have enough transverse U-shaped bars to resist the prestressing tension.


2012 ◽  
Vol 170-173 ◽  
pp. 885-888
Author(s):  
Peng Fei Li ◽  
Hong Bo Liu ◽  
Yu Zhang

The strength reduction method is applied in the analysis of slope stability, strength reduction, into the finite element program for calculating, until computations convergence. Combined with the engineering example, comparison of slope stability finite element method and the traditional limit equilibrium method the results show that, based on the strength reduction finite element analysis of slope stability is feasible.


Sign in / Sign up

Export Citation Format

Share Document