In Situ Observation of Pressure-induced Crystallization from Amorphous Calcium Carbonate by Time-resolved X-ray Diffraction

2015 ◽  
Vol 44 (4) ◽  
pp. 434-436 ◽  
Author(s):  
Koji Maruyama ◽  
Hiroyuki Kagi ◽  
Toru Inoue ◽  
Hiroaki Ohfuji ◽  
Toru Yoshino
2011 ◽  
Vol 172-174 ◽  
pp. 1255-1260
Author(s):  
Hidenori Terasaki ◽  
Zhang Shouyuan ◽  
Yu Ichi Komizo

A hybrid in-situ observation system has been developed to study the phase transformation behaviour simultaneously in both real and reciprocal lattice space. This paper presents the development of the observation system. Furthermore, as an example of the application of our developed system, martensitic transformation of Cr–Ni steel along a designed thermal cycle was in-situ tracked with the developed system. As a result of analysing the time-resolved X-ray diffraction data for the observed target, our system could directly detect the effect of transformation strain on austenite during martensitic transformation.


2007 ◽  
Vol 93 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Mitsuharu YONEMURA ◽  
Takahiro OSUKI ◽  
Hidenori TERASAKI ◽  
Yuichi KOMIZO ◽  
Masugu SATO ◽  
...  

Carbon ◽  
2015 ◽  
Vol 87 ◽  
pp. 246-256 ◽  
Author(s):  
Périne Landois ◽  
Mathieu Pinault ◽  
Stéphan Rouzière ◽  
Dominique Porterat ◽  
Cristian Mocuta ◽  
...  

2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


2017 ◽  
Vol 111 (8) ◽  
pp. 082907 ◽  
Author(s):  
Seiji Nakashima ◽  
Osami Sakata ◽  
Hiroshi Funakubo ◽  
Takao Shimizu ◽  
Daichi Ichinose ◽  
...  

2008 ◽  
Vol 72 (1) ◽  
pp. 201-204 ◽  
Author(s):  
A. Sumoondur ◽  
S. Shaw ◽  
I. Ahmed ◽  
L. G. Benning

AbstractIn this study, direct evidence for the formation of magnetite via a green rust intermediate is reported. The Fe(II) induced transformation of ferrihydrite, was quantified in situ and under O2-free conditions using synchrotron-based time-resolved energy dispersive X-ray diffraction. At pH 9 and Fe(II)/Fe(III) ratios of 0.5 and 1, rapid growth (6 min) of sulphate green rust and its subsequent transformation to magnetite was observed. Electron microscopy confirmed these results, showing the initial rapid formation of hexagonal sulphate green rust particles, followed by the corrosion of the green rust as magnetite growth occurred, indicating that the reaction proceeds via a dissolution-reprecipitation mechanism. At pH 7 and Fe(II)/Fe(III) ratio of 0.5, sulphate green rust was the stable phase, with no transformation to magnetite.


1998 ◽  
Vol 21 (4-6) ◽  
pp. 253-262 ◽  
Author(s):  
Dermot O'Hare ◽  
John S.O. Evans ◽  
Robin J. Francis ◽  
P. Shiv Halasyamani ◽  
Poul Norby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document