Preparation of Iron Oxide Nanoparticles via Successive Reduction–Oxidation in Reverse Micelles

2003 ◽  
Vol 32 (12) ◽  
pp. 1166-1167 ◽  
Author(s):  
Takuya Nakanishi ◽  
Hironori Iida ◽  
Tetsuya Osaka
2009 ◽  
Vol 152-153 ◽  
pp. 205-208 ◽  
Author(s):  
H. Arabi ◽  
S. Nateghi ◽  
S. Sadeghi

Iron oxide nanoparticles were synthesis by reverse micelle method. X-ray diffraction technique and vibration sample magnetometer were applied to characterize the produced samples at different conditions and parameters for synthesis route. There is no significant difference between samples prepared at 5°C and room temperature except a better crystalline at room temperature. The molar ratio of water to surfactant (w parameter) and concentration of the salt solution on size and magnetic properties of nanoparticles have been investigated. Increasing w leads to producing particles with larger size i.e. for w=16.83, 11.22, and 5.6, particles size are 15.22, 11.66 and 10.5 nm, respectively. The size of nanoparticles are in the range of 9 to 20 nanometers


2009 ◽  
Vol 105 (7) ◽  
pp. 07A522 ◽  
Author(s):  
M. D. Shultz ◽  
W. Braxton ◽  
C. Taylor ◽  
E. E. Carpenter

2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2020 ◽  
Vol 2020 (3) ◽  
pp. 54-61
Author(s):  
S.E. Litvin ◽  
◽  
Yu.A. Kurapov ◽  
E.M. Vazhnichaya ◽  
Ya.A. Stel’makh ◽  
...  

2015 ◽  
Vol 22 (15) ◽  
pp. 1808-1828 ◽  
Author(s):  
Diana Couto ◽  
Marisa Freitas ◽  
Felix Carvalho ◽  
Eduarda Fernandes

Sign in / Sign up

Export Citation Format

Share Document