scholarly journals In Vitro and in Vivo Comparative Study of Oral Nanoparticles and Gut Iontophoresis as Oral Delivery Systems for Insulin

2021 ◽  
Vol 44 (2) ◽  
pp. 251-258
Author(s):  
Mona M. Elkhatib ◽  
Amir I. Ali ◽  
Ali S. Al-badrawy
2012 ◽  
Vol 1487 ◽  
Author(s):  
E. Carvajal-Millan ◽  
C. Berlanga-Reyes ◽  
A. Rascón-Chu ◽  
A. L. Martínez-López ◽  
J. A. Márquez-Escalante ◽  
...  

ABSTRACTArabinoxylan gels are receiving increasing attention as oral delivery systems of biomolecules for therapeutic purposes. The aim of this research was to evaluate arabinoxylan gels as an oral delivery system for insulin, representing a painless therapy for diabetics. Gels at two concentrations of arabinoxylan were prepared (2.5 and 3.5 % w/v). One concentration of insulin (0.05 % w/v) entrapped in the arabinoxylan gels was investigated. At the end of gelation elasticity (G’) values were 11 and 20 for gels at 2.5 and 3.5% (w/v) in arabinoxylan, respectively. The presence of insulin in the gels did not affect the values of G’. The apparent diffusion coefficient for insulin decreased from 1.30 x 10-7 to 1.09 x 10-7 cm2/s when the concentration of arabinoxylan in the gel increased from 2.5 to 3.5% (w/v). The percentage of proteolysis for insulin entrapped in the gels at 2.5 and 3.5% in arabinoxylan (w/v) were 35 and 17%, respectively, in relation to 100% hydrolysis of insulin in solution. Results indicate that arabinoxylan gels could be potential candidates as oral delivery systems for insulin.


2020 ◽  
Vol 21 (6) ◽  
Author(s):  
Christina Karavasili ◽  
Ioannis I. Andreadis ◽  
Maria P. Tsantarliotou ◽  
Ioannis A. Taitzoglou ◽  
Paschalina Chatzopoulou ◽  
...  

2017 ◽  
Vol 166 ◽  
pp. 73-82 ◽  
Author(s):  
Delia Mandracchia ◽  
Adriana Trapani ◽  
Giuseppe Tripodo ◽  
Maria Grazia Perrone ◽  
Gaetano Giammona ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 959-970 ◽  
Author(s):  
F. Z. Zhou ◽  
T. Zeng ◽  
S. W. Yin ◽  
C. H. Tang ◽  
D. B. Yuan ◽  
...  

In this paper, we demonstrate for the first time the use of gliadin particles to structure algal oil (rich in DHA) and to exert chemical stability against lipid oxidation via the Pickering high internal phase emulsion (HIPE) strategy.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 736-742 ◽  
Author(s):  
Clizia Guccione ◽  
Maria Bergonzi ◽  
Khaled Awada ◽  
Vieri Piazzini ◽  
Anna Bilia

AbstractThe aim of this study was the development and characterization of lipid nanocarriers using food grade components for oral delivery of Serenoa repens CO2 extract, namely microemulsions (MEs) and self-microemulsifying drug delivery systems (SMEDDSs) to improve the oral absorption. A commercial blend (CB) containing 320 of S. repens CO2 extract plus the aqueous soluble extracts of nettle root and pineapple stem was formulated in two MEs and two SMEDDSs. The optimized ME loaded with the CB (CBM2) had a very low content of water (only 17.3%). The drug delivery systems were characterized by dynamic light scattering, transmission electron microscopy, and high-performance liquid chromatography (HPLC) with a diode-array detector analyses in order to evaluate the size, the homogeneity, the morphology, and the encapsulation efficiency. β-carotene was selected as marker for the quantitative HPLC analysis. Additionally, physical and chemical stabilities were acceptable during 3 wk at 4 °C. Stability of these nanocarriers in simulated stomach and intestinal conditions was proved. Finally, the improvement of oral absorption of S. repens was studied in vitro using parallel artificial membrane permeability assay. An enhancement of oral permeation was found in both CBM2 and CBS2 nanoformulations comparing with the CB and S. repens CO2 extract. The best performance was obtained by the CBM2 nanoformulation (~ 17%) predicting a 30 – 70% passive oral human absorption in vivo.


2020 ◽  
Vol 12 (1) ◽  
pp. 152-160
Author(s):  
Sung-Up Choi ◽  
Mi Jeong Kim ◽  
Sung Tae Kim ◽  
Hee-Cheol Kim ◽  
Kwan Hyung Cho ◽  
...  

Self-microemulsifying drug delivery systems represent a stable formulation for enhancing the solubility and absorption efficacy of poorly soluble drugs. In this study, a self-microemulsifying drug delivery system (SMEDDS) was designed and applied for oral administration of poorly water-soluble pazopanib, a Biopharmaceutical Classification Class II anticancer drug. The solubility of pazopanib was first evaluated using various oils, surfactants, and co-surfactants. Pseudoternary phase diagrams were plotted to identify the selfemulsifying region and the phase behavior of optimized vehicle selected after screening of oils, surfactants, and co-surfactants. The SMEDDS comprising Capmul MCM NF, Tween 80, and PEG 400 was fabricated for incorporating pazopanib. It exhibited spherical droplets with size of 86.9 ± 0.8 nm and zeta potential value of –14.7 ± 0.1 mV. In vitro dissolution profiles of the SMEDDS were 2.40-fold (pH 4.0) and 6.45-fold (pH 6.8) higher than that of pazopanib powder. In particular, pazopanib-SMEDDS showed pH-independent dissolution profiles. In vivo pharmacokinetic parameters of the SMEDDS revealed enhanced bioavailability of pazopanib, which was 3.32-fold higher than that of pazopanib powder when administered orally. Taken together, the SMEDDS is effective as an oral delivery vehicle for pazopanib. In addition, our findings demonstrate that self-microemulsifying drug delivery systems could be a potential tool for improving bioavailability of other poorly water-soluble drugs.


2015 ◽  
Vol 491 (1-2) ◽  
pp. 318-322 ◽  
Author(s):  
Thomas F. Palmberger ◽  
Flavia Laffleur ◽  
Melanie Greindl ◽  
Andreas Bernkop-Schnürch

Sign in / Sign up

Export Citation Format

Share Document