SKELETAL MUSCLE FORCE DECLINE AND RECOVERY FROM SHORT-TERM FATIQUING EXERCISE IN OLDER SUBJECTS AFTER ENDURANCE TRAINING.

1995 ◽  
Vol 27 (Supplement) ◽  
pp. S234
Author(s):  
D. R. Sinacore ◽  
R. J. Spina ◽  
W. M. Kohrt ◽  
M. Brown
PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261723
Author(s):  
Jamie-Lee M. Thompson ◽  
Daniel W. D. West ◽  
Thomas M. Doering ◽  
Boris P. Budiono ◽  
Sarah J. Lessard ◽  
...  

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


2006 ◽  
Vol 575 (3) ◽  
pp. 901-911 ◽  
Author(s):  
Martin J. Gibala ◽  
Jonathan P. Little ◽  
Martin Van Essen ◽  
Geoffrey P. Wilkin ◽  
Kirsten A. Burgomaster ◽  
...  

2013 ◽  
Vol 591 (18) ◽  
pp. 4637-4653 ◽  
Author(s):  
Aaron P. Russell ◽  
Severine Lamon ◽  
Hanneke Boon ◽  
Shogo Wada ◽  
Isabelle Güller ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
David E. Andrich ◽  
Ya Ou ◽  
Lilya Melbouci ◽  
Jean-Philippe Leduc-Gaudet ◽  
Nickolas Auclair ◽  
...  

2018 ◽  
Vol 64 (5) ◽  
pp. 564-569
Author(s):  
Yuriy Zharikov ◽  
Tatyana Zharikova ◽  
Vladimir Nikolenko

The objective of this review study was to analyze the relationship between skeletal muscle mass and postoperative short-term outcomes morbidity in patients with Klatskin tumor who underwent surgical treatment. Low index skeletal muscle mass had a negative impact factor on postoperative morbidity following resection of Klatskin tumor and should therefore be considered as preoperative risk assessment. The further study of body composition in oncological patients allowed revealing the group of patients with high probability of postoperative complications and this factor needed to be added to future models predictive scale of short-term outcomes with the aim of making the most rational preoperative treatment algorithm.


2021 ◽  
Vol 14 ◽  
pp. 117864692110031
Author(s):  
Marion Falabrègue ◽  
Anne-Claire Boschat ◽  
Romain Jouffroy ◽  
Marieke Derquennes ◽  
Haidar Djemai ◽  
...  

Low levels of the neurotransmitter serotonin have been associated with the onset of depression. While traditional treatments include antidepressants, physical exercise has emerged as an alternative for patients with depressive disorders. Yet there remains the fundamental question of how exercise is sensed by the brain. The existence of a muscle–brain endocrine loop has been proposed: according to this scenario, exercise modulates metabolization of tryptophan into kynurenine within skeletal muscle, which in turn affects the brain, enhancing resistance to depression. But the breakdown of tryptophan into kynurenine during exercise may also alter serotonin synthesis and help limit depression. In this study, we investigated whether peripheral serotonin might play a role in muscle–brain communication permitting adaptation for endurance training. We first quantified tryptophan metabolites in the blood of 4 trained athletes before and after a long-distance trail race and correlated changes in tryptophan metabolism with physical performance. In parallel, to assess exercise capacity and endurance in trained control and peripheral serotonin–deficient mice, we used a treadmill incremental test. Peripheral serotonin–deficient mice exhibited a significant drop in physical performance despite endurance training. Brain levels of tryptophan metabolites were similar in wild-type and peripheral serotonin–deficient animals, and no products of muscle-induced tryptophan metabolism were found in the plasma or brains of peripheral serotonin–deficient mice. But mass spectrometric analyses revealed a significant decrease in levels of 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in both the soleus and plantaris muscles, demonstrating that metabolization of tryptophan into serotonin in muscles is essential for adaptation to endurance training. In light of these findings, the breakdown of tryptophan into peripheral but not brain serotonin appears to be the rate-limiting step for muscle adaptation to endurance training. The data suggest that there is a peripheral mechanism responsible for the positive effects of exercise, and that muscles are secretory organs with autocrine-paracrine roles in which serotonin has a local effect.


Sign in / Sign up

Export Citation Format

Share Document