scholarly journals Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training

2013 ◽  
Vol 591 (18) ◽  
pp. 4637-4653 ◽  
Author(s):  
Aaron P. Russell ◽  
Severine Lamon ◽  
Hanneke Boon ◽  
Shogo Wada ◽  
Isabelle Güller ◽  
...  
2006 ◽  
Vol 575 (3) ◽  
pp. 901-911 ◽  
Author(s):  
Martin J. Gibala ◽  
Jonathan P. Little ◽  
Martin Van Essen ◽  
Geoffrey P. Wilkin ◽  
Kirsten A. Burgomaster ◽  
...  

2011 ◽  
Vol 111 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Lorenzo K. Love ◽  
Paul J. LeBlanc ◽  
J. Greig Inglis ◽  
Nicolette S. Bradley ◽  
Jon Choptiany ◽  
...  

Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity ( r2 = 0.399, P = 0.001) and PDP1 protein expression ( r2 = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α ( r2 = 0.310, P = 0.002) and PDK2 protein ( r2 = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼18% of the variance in PDP activity ( r2 = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼38% of the variance in PDP activity ( r2 = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity).


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261723
Author(s):  
Jamie-Lee M. Thompson ◽  
Daniel W. D. West ◽  
Thomas M. Doering ◽  
Boris P. Budiono ◽  
Sarah J. Lessard ◽  
...  

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Justin Crane ◽  
Daniel Ogborn ◽  
Arkan Abadi ◽  
Simon Melov ◽  
Alan Hubbard ◽  
...  

Author(s):  
Saeedeh Shadmehri ◽  
Mohammad Sherafati Moghadam ◽  
Farhad Daryanoosh ◽  
Shiva Jahani Golbar ◽  
Nader Tanideh

Introduction: The mTOR pathway in skeletal muscle plays a very important role in the protein synthesis process, which plays a very important role in proteins. The role of endurance exercise has not yet been studied in this important pathway in protein synthesis in people with type 2 diabetes. The purpose of the present study was to investigate the effect of 8 weeks endurance training on the content of total and phosphorylated AKT1, mTOR, P70S6K1 and 4E-BP1 in skeletal muscle FHL of rats with type 2 diabetes. Methods: In this experimental study, 16 Sprague-Dawely male rats with average weight of 270±20 were selected and randomly divided into two groups: control (n=8) and endurance training (n=8). The training group exercised according to the training program 4 days a week for 8 weeks. While the control group had no training program. T-test and SPSS V-19 were used to analyze the data. Results: There was not observed any significant difference in the content of total (P=0.58) and phosphorylated (P=0.33) AKT1, total (P=0.47) and phosphorylated (P=0.78) mTOR, total (P=0.24) and phosphorylated (P=0.12) P70S6K1 and total (P=0.45) and phosphorylated (P=0.48) 4E-BP1 proteins in the endurance training group compared to the control group. Conclusion: Endurance training for 8 weeks could not increase the total and phosphorylated content proteins of the present study; therefore, it cannot lead to protein synthesis or muscle hypertrophy through mTORC1 pathway.


2001 ◽  
Vol 79 (5) ◽  
pp. 386-392 ◽  
Author(s):  
S L Carter ◽  
C D Rennie ◽  
S J Hamilton ◽  
M A Tarnopolsky

Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of β-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in [Formula: see text]O2peak for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-β-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in [Formula: see text]O2peak/ fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.Key words: endurance training, oxidative potential, gender.


Sign in / Sign up

Export Citation Format

Share Document