scholarly journals Pacing Strategies

2007 ◽  
Vol 39 (Supplement) ◽  
pp. S349 ◽  
Author(s):  
Amber L. Sapp ◽  
Matt Green ◽  
FACS M ◽  
Phill Bishop ◽  
FACS M ◽  
...  
Keyword(s):  
Author(s):  
Daniel Suter ◽  
Caio Victor Sousa ◽  
Lee Hill ◽  
Volker Scheer ◽  
Pantelis Theo Nikolaidis ◽  
...  

In recent years, there has been an increasing number of investigations analyzing the effects of sex, performance level, and age on pacing in various running disciplines. However, little is known about the impact of those factors on pacing strategies in ultramarathon trail running. This study investigated the effects of age, sex, and performance level on pacing in the UTMB® (Ultra-trail du Mont Blanc) and aimed to verify previous findings obtained in the research on other running disciplines and other ultramarathon races. Data from the UTMB® from 2008 to 2019 for 13,829 race results (12,681 men and 1148 women) were analyzed. A general linear model (two-way analysis of variance (ANOVA)) was applied to identify a sex, age group, and interaction effect in pace average and pace variation. A univariate model (one-way ANOVA) was used to identify a sex effect for age, pace average, and pace variation for the fastest men and women. In our study, pace average and a steadier pace were positively correlated. Even pacing throughout the UTMB® correlated with faster finishing times. The average pace depended significantly on sex and age group. When considering the top five athletes in each age group, sex and age group also had significant effects on pace variation. The fastest women were older than the fastest men, and the fastest men were faster than the fastest women. Women had a higher pace variation than men. In male competitors, younger age may be advantageous for a successful finish of the UTMB®. Faster male runners seemed to be younger in ultramarathon trail running with large changes in altitude when compared to other distances and terrains.


Author(s):  
Beatriz Lara ◽  
Juan Del Coso

In 1500 m freestyle swimming races, pacing is generally represented by a parabolic or U-shaped curve indicating that swimming velocity is greatest at the start and the last laps of the race while swimmers maintain an even pace through the middle section of the race. However, there is no information to determine if 1500 m race winners select pacing different to other, less successful swimmers within the same competition. Therefore, this investigation aimed to describe the pacing strategies adopted by 1500 m freestyle competitive swimmers in World Championships (long course), from 2003 to 2019 to determine the most effective pacing to obtain victory or a medal. The official overall and split times for 1500 m freestyle races of the Fédération Internationale de Natation (FINA) were obtained from the website of this organization. In total, data of 143 swimming performances (71 male and 72 female) were extracted. With the split times, lap times, and position were calculated across the race. To determine differences in the pacing between best- and worst-ranked finalist, swimmers in each race were divided into four groups based on the final position (1st vs. 2nd vs. 3rd vs. 4–8th). All the lap times of the winners of the race were faster than those of participants classified as 4–8th position for men and women races (p < 0.05). However, there were no differences in lap velocity among the different positions achieved at the end of the race when it was normalized by average race velocity. Additionally, there were no differences in the lap-to-lap variability among swimmers with different positions at the end of the race. In summary, both men and women elite swimmers selected parabolic pacing consisting of a fast start in the first lap, an even pace close to their average race velocity in the mid-section of the race (from 50 to 1400 m), followed by an end spurt in the final lap(s). This pattern was very similar in all finalists irrespective of the final position in the race. Hence, the obtaining of a medal in the World Championships was associated to possessing a faster average race velocity rather than a specific pacing profile through the race.


2018 ◽  
Vol 13 (6) ◽  
pp. 694-700 ◽  
Author(s):  
Luis Rodriguez ◽  
Santiago Veiga

Purpose: To (1) compare the pacing strategies of different-level open-water swimmers during the 10-km race of the FINA 2015 Swimming World Championships and (2) relate these pacing strategies to the race performance. Methods: Final and intermediate split times, as well as intermediate race positions, from the 10-km race participants (69 men and 51 women) were collected from the public domain and were divided into 5 groups (G1–G5) depending on their finishing positions. Results: Medalists and finalists (G1 and G2, respectively) presented an even pacing profile with swimming velocities similar to those of the less successful swimmers (G3–G5) on the initial and middle stages of the race but a 1.5–3% increase in swimming velocity in the last quarter of the race. This acceleration toward the end of the race, or “end spurt,” was largely related to the race performance and was not observed in the G3 and G4 (even-paced profile) or G5 (positive pacing profile) groups. Intermediate race positions and lap rankings were negatively related to finishing position, indicating a delayed positioning of the most successful swimmers at 25%, 50%, and 75% of race distance. Conclusions: The adoption of a conservative starting strategy by open-water swimmers with a negative pacing profile and delayed partial positioning seems to increase the chances of overall race success, as it allows a fast end spurt that is closely related to successful finishing race positions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mehrie Harshad Patel ◽  
Shrikanth Sampath ◽  
Anoushka Kapoor ◽  
Devanshi Narendra Damani ◽  
Nikitha Chellapuram ◽  
...  

Cardiac arrhythmias constitute a tremendous burden on healthcare and are the leading cause of mortality worldwide. An alarming number of people have been reported to manifest sudden cardiac death as the first symptom of cardiac arrhythmias, accounting for about 20% of all deaths annually. Furthermore, patients prone to atrial tachyarrhythmias such as atrial flutter and fibrillation often have associated comorbidities including hypertension, ischemic heart disease, valvular cardiomyopathy and increased risk of stroke. Technological advances in electrical stimulation and sensing modalities have led to the proliferation of medical devices including pacemakers and implantable defibrillators, aiming to restore normal cardiac rhythm. However, given the complex spatiotemporal dynamics and non-linearity of the human heart, predicting the onset of arrhythmias and preventing the transition from steady state to unstable rhythms has been an extremely challenging task. Defibrillatory shocks still remain the primary clinical intervention for lethal ventricular arrhythmias, yet patients with implantable cardioverter defibrillators often suffer from inappropriate shocks due to false positives and reduced quality of life. Here, we aim to present a comprehensive review of the current advances in cardiac arrhythmia prediction, prevention and control strategies. We provide an overview of traditional clinical arrhythmia management methods and describe promising potential pacing techniques for predicting the onset of abnormal rhythms and effectively suppressing cardiac arrhythmias. We also offer a clinical perspective on bridging the gap between basic and clinical science that would aid in the assimilation of promising anti-arrhythmic pacing strategies.


1996 ◽  
Vol 14 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Gerard J. Fahy ◽  
Bruce L. Wilkoff

2021 ◽  
Author(s):  
Manuel Angulo ◽  
Alejandra Polanco ◽  
Luis Muñoz

Abstract Pacing strategies are used in cycling to optimize the power delivered by the cyclist during a race. Gains in race time have been obtained when using these strategies compared to self-paced approaches. For this reason, this study is focused on revising the effect that the variation of the cyclist’s parameters has on the pacing strategy and its results. A numeric method was used to propose pacing strategies for a cyclist riding on an ascending 3.7 km route with a constant 6.26% road grade. The method was validated and then implemented to study the effect of aerobic and anaerobic power delivery capacity, mass, and drag area on the pacing strategies and their corresponding estimated race times. The results showed that modifying 1% of the aerobic capacity or cyclist mass value led to a change of 1% on the race time. Modifying 1% the anaerobic capacity and the drag area led to changes of 0.03% and 0.02% on the race time, respectively. These results are strongly dependent on the route characteristics. It was concluded that for the studied route (constantly ascending), the variation of the cyclist’s aerobic capacity influences the pacing strategy (i.e., the power delivery over the distance). The anaerobic capacity and mass of the cyclist also influence the pacing strategy to a lesser extent.


Sign in / Sign up

Export Citation Format

Share Document