scholarly journals Maximal Oxygen Consumption Predicts Skeletal and Heart Muscle Biomarkers Changes after a Full Distance Ironman

2017 ◽  
Vol 49 (5S) ◽  
pp. 519
Author(s):  
Tom Danielsson ◽  
Jörg Carlsson ◽  
Patrick Bergman
Author(s):  
Yiannis Michailidis ◽  
Aristeidis Chatzimagioglou ◽  
Dimitrios Mikikis ◽  
Ioannis Ispirlidis ◽  
Thomas Metaxas

1998 ◽  
Vol 274 (6) ◽  
pp. E1106-E1112 ◽  
Author(s):  
Nobuharu Fujii ◽  
Sachiko Homma ◽  
Fumio Yamazaki ◽  
Ryoko Sone ◽  
Takeshi Shibata ◽  
...  

In the present study, the relationships between β-adrenergic receptor (β-AR) expression and aerobic capacity evaluated by maximal oxygen consumption ([Formula: see text]) and oxygen consumption level at ventilatory threshold (V˙o 2@VT) were investigated. Seventeen physically untrained and 25 trained men participated in the study. After supine resting, the peripheral blood was sampled for preparation of lymphocytes, the model cell used to analyze the β-AR state. The total number of β-AR in lymphocytes (β-ARtotal) was inversely correlated with theV˙o 2 max( r = −0.368; P < 0.05) and theV˙o 2@VT ( r = −0.359; P < 0.05). Similar relationships were also observed between the number of β-AR in cell surface and both V˙o 2 max( r = −0.491; P < 0.05) andV˙o 2@VT ( r = −0.498; P < 0.05). However, no correlation was obtained between the number of β-AR in intracellular compartments and eitherV˙o 2 max orV˙o 2@VT. The β2-AR mRNA level quantified by the use of competitive reverse transcription-polymerase chain reaction was inversely correlated withV˙o 2@VT ( r = −0.567; P < 0.05) and positively correlated with β-ARtotal( r = 0.521; P < 0.05). These findings suggest that the β-AR number in lymphocytes is inversely correlated with aerobic capacity. This relationship may be explained by downregulation of β-AR, including internalization with subsequent degradation of the receptors and inhibition of the β-AR biosynthesis.


2005 ◽  
Vol 30 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Sebastien Libicz ◽  
Belle Roels ◽  
Gregoire P. Millet

While the physiological adaptations following endurance training are relatively well understood, in swimming there is a dearth of knowledge regarding the metabolic responses to interval training (IT). The hypothesis tested predicted that two different endurance swimming IT sets would induce differences in the total time the subjects swam at a high percentage of maximal oxygen consumption [Formula: see text]. Ten trained triathletes underwent an incremental test to exhaustion in swimming so that the swimming velocity associated with [Formula: see text][Formula: see text] could be determined. This was followed by a maximal 400-m test and two intermittent sets at [Formula: see text] (a) 16 × 50 m with 15-s rest (IT50); (b) 8 × 100 m with 30-s rest (IT100). The times sustained above 95% [Formula: see text] (68.50 ± 62.69 vs. 145.01 ± 165.91 sec) and 95% HRmax (146.67 ± 131.99 vs. 169.78 ± 203.45 sec, p = 0.54) did not differ between IT50 and IT100 (values are mean ± SD). In conclusion, swimming IT sets of equal time duration at [Formula: see text] but of differing work-interval durations led to slightly different [Formula: see text] and HR responses. The time spent above 95% of [Formula: see text]max was twice as long in IT100 as in IT50, and a large variability between mean [Formula: see text] and HR values was also observed. Key words: interval training, maximal oxygen consumption, triathletes


Author(s):  
Andrew N. Bosch ◽  
Kirsten C. Flanagan ◽  
Maaike M. Eken ◽  
Adrian Withers ◽  
Jana Burger ◽  
...  

Elliptical trainers and steppers are proposed as useful exercise modalities in the rehabilitation of injured runners due to the reduced stress on muscles and joints when compared to running. This study compared the physiological responses to submaximal running (treadmill) with exercise on the elliptical trainer and stepper devices at three submaximal but identical workloads. Authors had 18 trained runners (male/female: N = 9/9, age: mean ± SD = 23 ± 3 years) complete randomized maximal oxygen consumption tests on all three modalities. Submaximal tests of 3 min were performed at 60%, 70%, and 80% of peak workload individually established for each modality. Breath-by-breath oxygen consumption, heart rate, fuel utilization, and energy expenditure were determined. The value of maximal oxygen consumption was not different between treadmill, elliptical, and stepper (49.3 ± 5.3, 48.0 ± 6.6, and 46.7 ± 6.2 ml·min−1·kg−1, respectively). Both physiological measures (oxygen consumption and heart rate) as well as carbohydrate and fat oxidation differed significantly between the different exercise intensities (60%, 70%, and 80%) but did not differ between the treadmill, elliptical trainer, and stepper. Therefore, the elliptical trainer and stepper are suitable substitutes for running during periods when a reduced running load is required, such as during rehabilitation from running-induced injury.


1958 ◽  
Vol 12 (3) ◽  
pp. 395-398 ◽  
Author(s):  
B. E. Welch ◽  
R. P. Riendeau ◽  
C. E. Crisp ◽  
R. S. Isenstein

2015 ◽  
Vol 18 (4) ◽  
pp. 560-561 ◽  
Author(s):  
Rawad El Hage ◽  
Gautier Zunquin ◽  
Eddy Zakhem ◽  
Denis Theunynck ◽  
Dominique Bouglé

2003 ◽  
Vol 9 (5) ◽  
pp. S43
Author(s):  
Christine Lawless ◽  
Richard Cooper ◽  
Guichan Cao ◽  
Mirjana Vekich ◽  
Jeanne Nacpil

Sign in / Sign up

Export Citation Format

Share Document