scholarly journals Concussion History Does Not Predict Pupillary Light Reflex or Visual Sensory Performance in Young Adults

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 102
Author(s):  
Cassie B. Ford ◽  
Christina B. Vander Vegt ◽  
Nikki Barczak ◽  
Patricia R. Combs ◽  
Jamie DeCicco ◽  
...  
PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204621 ◽  
Author(s):  
Elise M. McGlashan ◽  
Angus C. Burns ◽  
Jade M. Murray ◽  
Tracey L. Sletten ◽  
Michelle Magee ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1104
Author(s):  
Frederick Robert Carrick ◽  
Sergio F. Azzolino ◽  
Melissa Hunfalvay ◽  
Guido Pagnacco ◽  
Elena Oggero ◽  
...  

The size of our pupils changes continuously in response to variations in ambient light levels, a process known as the pupillary light reflex (PLR). The PLR is not a simple reflex as its function is modulated by cognitive brain function and any long-term changes in brain function secondary to injury should cause a change in the parameters of the PLR. We performed a retrospective clinical review of the PLR of our patients using the BrightLamp Reflex iPhone app. The PLR variables of latency, maximum pupil diameter (MaxPD), minimum pupil diameter (MinPD), maximum constriction velocity (MCV), and the 75% recovery time (75% PRT) were associated with significant differences between subjects who had suffered a concussion and those that had not. There were also significant differences in PLR metrics over the life span and between genders and those subjects with and without symptoms. The differences in PLR metrics are modulated not only by concussion history but also by gender and whether or not the person has symptoms associated with a head injury. A concussive injury to the brain is associated with changes in the PLR that persist over the life span, representing biomarkers that might be used in clinical diagnosis, treatment, and decision making.


2015 ◽  
Vol 6 ◽  
Author(s):  
Shakoor Ba-Ali ◽  
Birgit Sander ◽  
Adam Elias Brøndsted ◽  
Henrik Lund-Andersen

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162476 ◽  
Author(s):  
Maria Angeles Bonmati-Carrion ◽  
Konstanze Hild ◽  
Cheryl Isherwood ◽  
Stephen J. Sweeney ◽  
Victoria L. Revell ◽  
...  

2017 ◽  
pp. S277-S284 ◽  
Author(s):  
A. MESTANIKOVA ◽  
I. ONDREJKA ◽  
M. MESTANIK ◽  
D. CESNEKOVA ◽  
Z. VISNOVCOVA ◽  
...  

Major depressive disorder is associated with abnormal autonomic regulation which could be noninvasively studied using pupillometry. However, the studies in adolescent patients are rare. Therefore, we aimed to study the pupillary light reflex (PLR), which could provide novel important information about dynamic balance between sympathetic and parasympathetic nervous system in adolescent patients suffering from major depression. We have examined 25 depressive adolescent girls (age 15.2±0.3 year) prior to pharmacotherapy and 25 age/gender-matched healthy subjects. PLR parameters were measured separately for both eyes after 5 min of rest using Pupillometer PLR-2000 (NeurOptics, USA). The constriction percentual change for the left eye was significantly lower in depressive group compared to control group (-24.12±0.87 % vs. –28.04±0.96%, p˂0.01). Furthermore, average constriction velocity and maximum constriction velocity for the left eye were significantly lower in depressive group compared to control group (p˂0.05, p˂0.01, respectively). In contrast, no significant between-groups differences were found for the right eye. Concluding, this study revealed altered PLR for left eye indicating a deficient parasympathetic activity already in adolescent major depression. Additionally, the differences between left and right eye could be related to functional lateralization of autonomic control in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document