scholarly journals Charging Behaviour on Polypropylene Particle Surface in a Spouted Bed Plasma Reactor

2021 ◽  
Vol 47 (6) ◽  
pp. 273-280
Author(s):  
Nobusuke Kobayashi ◽  
Yu Tonobe ◽  
Kenji Kamiya ◽  
Baiqiang Zhang ◽  
Yoshinori Itaya ◽  
...  
2018 ◽  
Vol 44 (4) ◽  
pp. 236-241
Author(s):  
Nobusuke Kobayashi ◽  
Baiqiang Zhang ◽  
Kengo Hanai ◽  
Yoshinori Itaya

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2276
Author(s):  
Zhao Chen ◽  
Lin Jiang ◽  
Mofan Qiu ◽  
Meng Chen ◽  
Rongzheng Liu ◽  
...  

Particle adhesion is of great importance to coating processes due to its effect on fluidization. Currently, Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) has become a powerful tool for the study of multiphase flows. Various contact force models have also been proposed. However, particle dynamics in high temperature will be changed with particle surface properties changing. In view of this, an adhesion model is developed based on approaching-loading-unloading-detaching idea and particle surface change under high temperature in this paper. Analyses of the adhesion model are given through two particle collision process and validated by experiment. Effects of inlet gas velocity and adhesion intensity on spouted bed dynamics are investigated. It is concluded that fluidization cycle will be accelerated by adhesion, and intensity of fluidization will be marginally enhanced by slight adhesion. Within a certain range, increasing inlet gas velocity will lead to strong intensity of particle motion. A parameter sensitivity comparison of linear spring-damping model and Hertz-Mindlin Model is given, which shows in case of small overlaps, forces calculated by both models have little distinction, diametrically opposed to that of large overlaps.


2020 ◽  
Vol 46 (6) ◽  
pp. 183-192
Author(s):  
Nobusuke Kobayashi ◽  
Kyosuke Ono ◽  
Baiqiang Zhang ◽  
Kenji Kamiya ◽  
Yoshinori Itaya ◽  
...  
Keyword(s):  

2009 ◽  
Vol 87 (5) ◽  
pp. 695-703 ◽  
Author(s):  
S. C. S. Rocha ◽  
M. W. Donida ◽  
A. M. M. Marques

2007 ◽  
Vol 5 (5) ◽  
pp. 337-344 ◽  
Author(s):  
Elisabeth Pallai-Varsányi ◽  
Judit Tóth ◽  
János Gyenis

MRS Advances ◽  
2019 ◽  
Vol 4 (27) ◽  
pp. 1589-1595
Author(s):  
Chi-Chin Wu ◽  
Kelsea K. Miller ◽  
Scott D. Walck ◽  
Michelle Pantoya

ABSTRACTThis work describes exploration of mitigating the parasitic amorphous alumina (Al2O3) shell of aluminum nanoparticles (n-Al) and modifying the surface using different plasmas, leading to n-Al with thinner shell and different coatings including carbons and oxidizing salt called aluminum iodate hexahydrate (AIH), respectively. The approach exploits a prototype atmospheric non-thermal plasma reactor with dielectric barrier discharge (DBD) configuration for nanoparticle surface modifications using n-Al of 80 nm average diameter as an example. Preliminary results indicate that the amorphous Al2O3 shell surrounding the active aluminum core can be mitigated with inert plasmas by as much as 40% using either helium (He) or argon (Ar). The particle surface becomes carbon-rich with carbon monoxide (CO) / He plasmas. By immersing the plasma-treated n-Al in an iodic acid (HIO3) solution, AIH crystals can be formed on the n-Al surface. Transmission electron microscopy (TEM) is used as a major tool to study the details of the modified surface morphologies, diffraction patterns, and chemical composition of the modified n-Al. The results demonstrate effective surface passivation of n-Al via atmospheric plasma techniques.


Author(s):  
G. McMahon ◽  
T. Malis

As with all techniques which are relatively new and therefore underutilized, diamond knife sectioning in the physical sciences continues to see both developments of the technique and novel applications.Technique Developments Development of specific orientation/embedding procedures for small pieces of awkward shape is exemplified by the work of Bradley et al on large, rather fragile particles of nuclear waste glass. At the same time, the frequent problem of pullout with large particles can be reduced by roughening of the particle surface, and a proven methodology using a commercial coupling agent developed for glasses has been utilized with good results on large zeolite catalysts. The same principle (using acid etches) should work for ceramic fibres or metal wires which may only partially pull out but result in unacceptably thick sections. Researchers from the life sciences continue to develop aspects of embedding media which may be applicable to certain cases in the physical sciences.


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


Author(s):  
S. Abanades ◽  
J. M. Badie ◽  
Gilles Flamant ◽  
L. Fulcheri ◽  
J. Gonzales-Aguilar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document