Clinical Usefulness of the Serial Examination of Three-Dimensional Global Longitudinal Strain After the Onset of ST-Elevation Acute Myocardial Infarction

2021 ◽  
Author(s):  
Noriaki Iwahashi ◽  
Mutsuo Horii ◽  
Jin Kirigaya ◽  
Takeru Abe ◽  
Masaomi Gohbara ◽  
...  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Holzknecht ◽  
M Reindl ◽  
C Tiller ◽  
I Lechner ◽  
T Hornung ◽  
...  

Abstract Background Left ventricular ejection fraction (LVEF) is the parameter of choice for left ventricular (LV) function assessment and risk stratification of patients with ST-elevation myocardial infarction (STEMI); however, its prognostic value is limited. Other measures of LV function such as global longitudinal strain (GLS) and mitral annular plane systolic excursion (MAPSE) might provide additional prognostic information post-STEMI. However, comprehensive investigations comparing these parameters in terms of prediction of hard clinical events following STEMI are lacking so far. Purpose We aimed to investigate the comparative prognostic value of LVEF, MAPSE and GLS by cardiac magnetic resonance (CMR) imaging in the acute stage post-STEMI for the occurrence of major adverse cardiac events (MACE). Methods This observational study included 407 consecutive acute STEMI patients treated with primary percutaneous coronary intervention (PCI). Comprehensive CMR investigations were performed 3 [interquartile range (IQR): 2–4] days after PCI to determine LVEF, GLS and MAPSE as well as myocardial infarct characteristics. Primary endpoint was the occurrence of MACE defined as composite of death, re-infarction and congestive heart failure. Results During a follow-up of 21 [IQR: 12–50] months, 40 (10%) patients experienced MACE. LVEF (p=0.005), MAPSE (p=0.001) and GLS (p<0.001) were significantly related to MACE. GLS showed the highest prognostic value with an area under the curve (AUC) of 0.71 (95% CI 0.63–0.79; p<0.001) compared to MAPSE (AUC: 0.67, 95% CI 0.58–0.75; p=0.001) and LVEF (AUC: 0.64, 95% CI 0.54–0.73; p=0.005). After multivariable analysis, GLS emerged as sole independent predictor of MACE (HR: 1.22, 95% CI 1.11–1.35; p<0.001). Of note, GLS remained associated with MACE (p<0.001) even after adjustment for infarct size and microvascular obstruction. Conclusion CMR-derived GLS emerged as strong and independent predictor of MACE after acute STEMI with additive prognostic validity to LVEF and parameters of myocardial damage. Funding Acknowledgement Type of funding source: None


2010 ◽  
Vol 74 (8) ◽  
pp. 1651-1657 ◽  
Author(s):  
Tatsuya Maruhashi ◽  
Masaharu Ishihara ◽  
Ichirou Inoue ◽  
Takuji Kawagoe ◽  
Yuji Shimatani ◽  
...  

2019 ◽  
Vol 6 (4) ◽  
pp. 81-89
Author(s):  
Gowsini Joseph ◽  
Tomas Zaremba ◽  
Martin Berg Johansen ◽  
Sarah Ekeloef ◽  
Einar Heiberg ◽  
...  

The aim of this study was to investigate if there was an association between infarct size (IS) measured by cardiac magnetic resonance (CMR) and echocardiographic global longitudinal strain (GLS) in the early stage of acute myocardial infarction in patients with preserved left ventricular ejection fraction (LVEF). Patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention were assessed with CMR and transthoracic echocardiogram within 1 week of hospital admission. Two-dimensional speckle tracking was performed using a semi-automatic algorithm (EchoPac, GE Healthcare). Longitudinal strain curves were generated in a 17-segment model covering the entire left ventricular myocardium. GLS was calculated automatically. LVEF was measured by auto-LVEF in EchoPac. IS was measured by late gadolinium enhancement CMR in short-axis views covering the left ventricle. The study population consisted of 49 patients (age 60.4 ± 9.7 years; 92% male). The study population had preserved echocardiographic LVEF with a mean of 45.8 ± 8.7%. For each percent increase of IS, we found an impairment in GLS by 1.59% (95% CI 0.57–2.61), P = 0.02, after adjustment for sex, age and LVEF. No significant association between IS and echocardiographic LVEF was found: −0.25 (95% CI: −0.61 to 0.11), P = 0.51. At the segmental level, the strongest association between IS and longitudinal strain was found in the apical part of the LV: impairment of 1.69% (95% CI: 1.14–2.23), P < 0.001, for each percent increase in IS. In conclusion, GLS was significantly associated with IS in the early stage of acute myocardial infarction in patients with preserved LVEF, and this association was strongest in the apical part of the LV. No association between IS and LVEF was found.


Sign in / Sign up

Export Citation Format

Share Document