scholarly journals Pathogenetic Mechanisms of Bronchial Asthma and Airway Hyperresponsiveness: A Pharmacological View. Molecular mechanisms of the hyperresponsiveness of airway smooth muscle in bronchial asthma.

1998 ◽  
Vol 111 (4) ◽  
pp. 249-256 ◽  
Author(s):  
Yoshihiko CHIBA ◽  
Miwa MISAWA
2003 ◽  
Vol 95 (2) ◽  
pp. 844-853 ◽  
Author(s):  
Darren J. Fernandes ◽  
Richard W. Mitchell ◽  
Oren Lakser ◽  
Maria Dowell ◽  
Alastair G. Stewart ◽  
...  

It is now accepted that a host of cytokines, chemokines, growth factors, and other inflammatory mediators contributes to the development of nonspecific airway hyperresponsiveness in asthma. Yet, relatively little is known about how inflammatory mediators might promote airway structural remodeling or about the molecular mechanisms by which they might exaggerate smooth muscle shortening as observed in asthmatic airways. Taking a deep inspiration, which provides relief of bronchodilation in normal subjects, is less effective in asthmatic subjects, and some have speculated that this deficiency stems directly from an abnormality of airway smooth muscle and results in airway hyperresponsiveness to constrictor agonists. Here, we consider some of the mechanisms by which inflammatory mediators might acutely or chronically induce changes in the contractile apparatus that in turn might contribute to hyperresponsive airways in asthma.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph A. Jude ◽  
Mythili Dileepan ◽  
Reynold A. Panettieri ◽  
Timothy F. Walseth ◽  
Mathur S. Kannan

CD38 is a transmembrane glycoprotein expressed in airway smooth muscle cells. The enzymatic activity of CD38 generates cyclic ADP-ribose from β-NAD. Cyclic ADP-ribose mobilizes intracellular calcium during activation of airway smooth muscle cells by G-protein-coupled receptors through activation of ryanodine receptor channels in the sarcoplasmic reticulum. Inflammatory cytokines that are implicated in asthma upregulate CD38 expression and increase the calcium responses to contractile agonists in airway smooth muscle cells. The augmented intracellular calcium responses following cytokine exposure of airway smooth muscle cells are inhibited by an antagonist of cyclic ADP-ribose. Airway smooth muscle cells from CD38 knockout mice exhibit attenuated intracellular calcium responses to agonists, and these mice have reduced airway response to inhaled methacholine. CD38 also contributes to airway hyperresponsiveness as shown in mouse models of allergen or cytokine-induced inflammatory airway disease. In airway smooth muscle cells obtained from asthmatics, the cytokine-induced CD38 expression is significantly enhanced compared to expression in cells from nonasthmatics. This differential induction of CD38 expression in asthmatic airway smooth muscle cells stems from increased activation of MAP kinases and transcription through NF-κB, and altered post-transcriptional regulation through microRNAs. We propose that increased capacity for CD38 signaling in airway smooth muscle in asthma contributes to airway hyperresponsiveness.


2013 ◽  
Vol 115 (9) ◽  
pp. 1304-1315 ◽  
Author(s):  
Audrey Lee-Gosselin ◽  
Chris D. Pascoe ◽  
Christian Couture ◽  
Peter D. Paré ◽  
Ynuk Bossé

Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the “length dependency of ASM force” in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K+. Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6–10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8–117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4–4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness.


2001 ◽  
Vol 280 (5) ◽  
pp. L965-L973 ◽  
Author(s):  
Catherine Benoit ◽  
Barbara Renaudon ◽  
Dany Salvail ◽  
Eric Rousseau

Epoxyeicosatrienoic acids (EETs) are produced from arachidonic acid via the cytochrome P-450 epoxygenase pathway. EETs are able to modulate smooth muscle tone by increasing K+ conductance, hence generating hyperpolarization of the tissues. However, the molecular mechanisms by which EETs induce smooth muscle relaxation are not fully understood. In the present study, the effects of EETs on airway smooth muscle (ASM) were investigated using three electrophysiological techniques. 8,9-EET and 14,15-EET induced concentration-dependent relaxations of the ASM precontracted with a muscarinc agonist (carbamylcholine chloride), and these relaxations were partly inhibited by 10 nM iberiotoxin (IbTX), a specific large-conductance Ca2+-activated K+ (BKCa) channel blocker. Moreover, 3 μM 8,9- or 14,15-EET induced hyperpolarizations of −12 ± 3.5 and −16 ± 3 mV, with EC50 values of 0.13 and 0.14 μM, respectively, which were either reversed or blocked on addition of 10 nM IbTX. These results indicate that BKCa channels are involved in hyperpolarization and participate in the relaxation of ASM. In addition, complementary experiments demonstrated that 8,9- and 14,15-EET activate reconstituted BKCa channels at low free Ca2+ concentrations without affecting their unitary conductance. These increases in channel activity were IbTX sensitive and correlated well with the IbTX-sensitive hyperpolarization and relaxation of ASM. Together these results support the view that, in ASM, the EETs act through an epithelium-derived hyperpolarizing factorlike effect.


2020 ◽  
Vol 62 (3) ◽  
pp. 310-318 ◽  
Author(s):  
Vishal Parikh ◽  
Jacqueline Scala ◽  
Riva Patel ◽  
Corinne Corbi ◽  
Dennis Lo ◽  
...  

1996 ◽  
Vol 81 (6) ◽  
pp. 2703-2703 ◽  
Author(s):  
J. J. Fredberg ◽  
K. A. Jones ◽  
M. Nathan ◽  
S. Raboudi ◽  
Y. S. Prakash ◽  
...  

Fredberg, J. J., K. A. Jones, M. Nathan, S. Raboudi, Y. S. Prakash, S. A. Shore, J. P. Butler, and G. C. Sieck. Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J. Appl. Physiol. 81(6): 2703–2712, 1996.—In muscle, active force and stiffness reflect numbers of actin-myosin interactions and shortening velocity reflects their turnover rates, but the molecular basis of mechanical friction is somewhat less clear. To better characterize molecular mechanisms that govern mechanical friction, we measured the rate of mechanical energy dissipation and the rate of actomyosin ATP utilization simultaneously in activated canine airway smooth muscle subjected to small periodic stretches as occur in breathing. The amplitude of the frictional stress is proportional to ηE, where E is the tissue stiffness defined by the slope of the resulting force vs. displacement loop and η is the hysteresivity defined by the fatness of that loop. From contractile stimulus onset, the time course of frictional stress amplitude followed a biphasic pattern that tracked that of the rate of actomyosin ATP consumption. The time course of hysteresivity, however, followed a different biphasic pattern that tracked that of shortening velocity. Taken together with an analysis of mechanical energy storage and dissipation in the cross-bridge cycle, these results indicate, first, that like shortening velocity and the rate of actomyosin ATP utilization, mechanical friction in airway smooth muscle is also governed by the rate of cross-bridge cycling; second, that changes in cycling rate associated with conversion of rapidly cycling cross bridges to slowly cycling latch bridges can be assessed from changes of hysteresivity of the force vs. displacement loop; and third, that steady-state force maintenance (latch) is a low-friction contractile state. This last finding may account for the unique inability of asthmatic patients to reverse spontaneous airways obstruction with a deep inspiration.


1995 ◽  
Vol 79 (3) ◽  
pp. 700-705 ◽  
Author(s):  
K. Noguchi ◽  
K. Ishikawa ◽  
M. Yano ◽  
A. Ahmed ◽  
A. Cortes ◽  
...  

Endothelin A (ETA)-receptors mediate ET-1 contractions of ovine airway smooth muscle. Therefore, the ETA-receptor antagonist, BQ-123, was used to test the hypothesis that ET-1 contributes to antigen-induced airway responses in sheep allergic to Ascaris suum. We first established the protective effect of BQ-123 by demonstrating that BQ-123 given as an aerosol (0.3 or 1.0 mg/kg in 3 ml buffer) or by continuous intravenous infusion (100 micrograms.kg-1.min-1) significantly blocked the bronchoconstriction to aerosolized ET-1 (0.2–200 micrograms/ml). To determine whether ET-1 contributed to antigen-induced airway responses, BQ-123 was given either as an intravenous infusion (100 micrograms.kg-1.min-1) beginning 30 min before and continuing for 8 h after antigen challenge or as an aerosol (1 mg/kg in 3 ml buffer) 30 min before and 4, 8, and 24 h after antigen challenge. Neither treatment with intravenous infusion nor aerosolized BQ-123 blocked the immediate antigen-induced bronchoconstriction, but both treatments significantly reduced the late response (approximately 50%). The treatments with aerosolized BQ-123 also blocked the antigen-induced airway hyperresponsiveness to inhaled carbachol seen 24 h after challenge. Subsequently, we found that sheep developed airway hyperresponsiveness to inhaled carbachol at 4 and 24 h after ET-1 challenge, an effect that was blocked by aerosolized BQ-123. We conclude that in allergic sheep 1) aerosolized ET-1 causes bronchoconstriction, in part, by stimulation of ETA-receptors, 2) ET-1 is released in the airways after antigen challenge, and 3) this peptide contributes to the severity of the allergic responses, probably by increasing airway smooth muscle responsiveness.


Sign in / Sign up

Export Citation Format

Share Document