scholarly journals Affinity for (3H)Iloprost Binding Sites and cAMP Synthesis Activity of a 3-Oxa-methano Prostaglandin I1 Analog, SM-10906, in Human Platelets and Endothelial Cells.

1997 ◽  
Vol 74 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Takashi Hiroi ◽  
Keiko Maruyama ◽  
Kaoru Hattori ◽  
Toshio Ohnuki ◽  
Takafumi Nagatomo ◽  
...  
1984 ◽  
Vol 4 (11) ◽  
pp. 941-948 ◽  
Author(s):  
Jean M. Hall ◽  
Philip G. Strange

The stable prostacyclin analogue [3H]iloprost has been used for labelling prostacyclin-binding sites on human platelets and NCB-20 neuronal hybrid cells. The ligand-binding properties of the sites have been determined and correlate well with stimulation of cAMP synthesis in NCB-20 cells and inhibition of aggregation in human platelets.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1996 ◽  
Vol 75 (03) ◽  
pp. 497-502 ◽  
Author(s):  
Hadewijch L M Pekelharing ◽  
Henne A Kleinveld ◽  
Pieter F C.C.M Duif ◽  
Bonno N Bouma ◽  
Herman J M van Rijn

SummaryLp(a) is an LDL-like lipoprotein plus an additional apolipoprotein apo(a). Based on the structural homology of apo(a) with plasminogen, it is hypothesized that Lp(a) interferes with fibrinolysis. Extracellular matrix (ECM) produced by human umbilical vein endothelial cells was used to study the effect of Lp(a) and LDL on plasminogen binding and activation. Both lipoproteins were isolated from the same plasma in a single step. Plasminogen bound to ECM via its lysine binding sites. Lp(a) as well as LDL were capable of competing with plasminogen binding. The degree of inhibition was dependent on the lipoprotein donor as well as the ECM donor. When Lp(a) and LDL obtained from one donor were compared, Lp(a) was always a much more potent competitor. The effect of both lipoproteins on plasminogen binding was reflected in their effect on plasminogen activation. It is speculated that Lp(a) interacts with ECM via its LDL-like lipoprotein moiety as well as via its apo(a) moiety.


1975 ◽  
Vol 34 (03) ◽  
pp. 780-794 ◽  
Author(s):  
Dianne M Kenney ◽  
Francis C Chao ◽  
James L Tullis ◽  
Gail S Conneely

SummaryThe uptake and binding of antimitotic alkaloid colchicine has been demonstrated in washed preparations of human platelets. A silicone oil technique was adapted so that both uptake and binding of 14C-colchicine were examined in the same platelet preparations. The time dependence and amount of colchicine taken up and bound by different platelet preparations during a 90 to 120 min incubation period were highly reproducible. Both colchicine uptake and binding by intact platelets, and colchicine binding by preparations of lysed platelets were specific and temperature dependent. Colchicine uptake was slowly reversible. Magnesium and GTP enhanced colchicine binding by lysed platelet preparations but calcium decreased binding.Exposure of platelets to either cold (4° C) or to thrombin, which disrupt platelet microtubules, produced significant increases in colchicine uptake and binding. The thrombin effect was maximal at 37° C and resulted in a greater increase in uptake and binding than that produced by either cold treatment alone or, by cold treatment followed by incubation with thrombin at 37° C. The amount of increase in uptake and binding produced by thrombin was independent of both thrombin (1–5 Units/109 platelets) and colchicine concentrations (1–50 × 10−6M).It is postulated that thrombin may initiate the formation, or make available, colchicine binding sites (microtubule subunits) within platelets.


1983 ◽  
Vol 49 (02) ◽  
pp. 132-137 ◽  
Author(s):  
A Eldor ◽  
G Polliack ◽  
I Vlodavsky ◽  
M Levy

SummaryDipyrone and its metabolites 4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoan- tipyrine inhibited the formation of thromboxane A2 (TXA2) during in vitro platelet aggregation induced by ADP, epinephrine, collagen, ionophore A23187 and arachidonic acid. Inhibition occurred after a short incubation (30–40 sec) and depended on the concentration of the drug or its metabolites and the aggregating agents. The minimal inhibitory concentration of dipyrone needed to completely block aggregation varied between individual donors, and related directly to the inherent capacity of their platelets to synthesize TXA2.Incubation of dipyrone with cultured bovine aortic endothelial cells resulted in a time and dose dependent inhibition of the release of prostacyclin (PGI2) into the culture medium. However, inhibition was abolished when the drug was removed from the culture, or when the cells were stimulated to produce PGI2 with either arachidonic acid or ionophore A23187.These results indicate that dipyrone exerts its inhibitory effect on prostaglandins synthesis by platelets or endothelial cells through a competitive inhibition of the cyclooxygenase system.


2020 ◽  
Vol 6 (22) ◽  
pp. eaaz4107
Author(s):  
Pei-Pei Yang ◽  
Kuo Zhang ◽  
Ping-Ping He ◽  
Yu Fan ◽  
Xuejiao J. Gao ◽  
...  

Platelets play a critical role in the regulation of coagulation, one of the essential processes in life, attracting great attention. However, mimicking platelets for in vivo artificial coagulation is still a great challenge due to the complexity of the process. Here, we design platelet-like nanoparticles (pNPs) based on self-assembled peptides that initiate coagulation and form clots in blood vessels. The pNPs first bind specifically to a membrane glycoprotein (i.e., CD105) overexpressed on angiogenetic endothelial cells in the tumor site and simultaneously transform into activated platelet-like nanofibers (apNFs) through ligand-receptor interactions. Next, the apNFs expose more binding sites and recruit and activate additional pNPs, forming artificial clots in both phantom and animal models. The pNPs are proven to be safe in mice without systemic coagulation. The self-assembling peptides mimic platelets and achieve artificial coagulation in vivo, thus providing a promising therapeutic strategy for tumors.


1992 ◽  
Vol 26 (2) ◽  
pp. 114-121 ◽  
Author(s):  
F. Roussell ◽  
J. Dalion ◽  
J. C. Wissocq

The Euonymus europaeus agglutinin (EEA) is an endothelial marker in mammalia. In canine tissues, 4 types of endothelial cells (general, nervous, arterial, hepatic) were identified by the presence of the EEA receptor and by its sensitivity to neuraminidase enhancement. In adult dogs, EEA binding saccharides had endothelial or epithelial distributions and reactivities similar to those described for human tissues. Different EEA reactivities were observed between fetal, neonatal and adult canine tissues mainly at the arterial level. These findings suggest that the development of the binding sites is not identical in dog and man. Related lectins and monoclonal antibodies were used to characterize the EEA binding site, and the probable structure of the EEA binding saccharide in endothelial cells appeared to be αGal (1,3) βGal (1,4) GIcNAc.


1994 ◽  
Vol 267 (6) ◽  
pp. C1543-C1552 ◽  
Author(s):  
M. Kimura ◽  
K. Nakamura ◽  
J. W. Fenton ◽  
T. T. Andersen ◽  
J. P. Reeves ◽  
...  

The role of external Na+ in agonist-evoked platelet Ca2+ response is poorly understood. This was explored in this study. Removal of external Na+ decreased both cytosolic Ca2+ mobilization and external Ca2+ entry, induced by thrombin but not by ADP or vasopressin. That external Na+ regulates thrombin activities was demonstrated by 1) Na+ dependency of the amidolytic activity of thrombin, 2) inhibition of thrombin binding to the high-affinity binding sites in Na(+)-free medium, and 3) attenuation of thrombin-induced inositol 1,4,5-trisphosphate production in Na(+)-free medium. Moreover, Ca2+ response to the thrombin receptor 6-amino acid peptide was independent of external Na+. The role of external Na+ in modifying agonist-evoked Ca2+ response through activation of Na+/H+ antiport and cytosolic alkalinization was then explored. Cytosolic alkalinization by monensin or NH4Cl enhanced thrombin, ADP, and thimerosal-induced external Ca2+ entry. Thimerosal-induced acceleration of external Ca2+ entry was diminished by the inhibition of Na+/H+ antiport. Thus external Na+ enhances thrombin activities, and cytosolic pH mediates store-regulated external Ca2+ entry. However, Na+/H+ antiport activation is not essential for agonist-evoked Ca2+ mobilization and external Ca2+ entry.


1996 ◽  
Vol 270 (6) ◽  
pp. L973-L978 ◽  
Author(s):  
A. Siflinger-Birnboim ◽  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. B. Malik

We studied the role of Ca2+ in mediating the hydrogen peroxide (H2O2)-induced increase in endothelial permeability to 125I-labeled albumin using bovine pulmonary microvessel endothelial cells (BMVEC). Changes in cytosolic-free Ca2+ ([Ca2+]i) were monitored in BMVEC monolayers loaded with the Ca(2+)-sensitive membrane permeant fluorescent dye fura 2-AM. H2O2 (100 microM) produced a rise in [Ca2+]i within 10 s that was reduced by the addition of EGTA to the medium. Uptake of 45Ca2+ from the extracellular medium increased in the presence of H2O2 (100 microM) compared with control monolayers, suggesting that the H2O2-induced rise in [Ca2+]i is partly the result of extracellular Ca2+ influx. The effects of [Ca2+]i on endothelial permeability were addressed by pretreatment of BMVEC monolayers with BAPTA-AM (3-5 microM), a membrane permeant Ca2+ chelator, before the H2O2 exposure. BAPTA-AM produced an approximately 50% decrease in the H2O2-induced increase in endothelial permeability compared with endothelial cell monolayers exposed to H2O2 alone. The increase in endothelial permeability was independent of Ca2+ influx, since LaCl3 (0-100 microM), which displaces Ca2+ from binding sites on the cell surface, did not modify the permeability response. These results indicate that the rise in [Ca2+]i produced by H2O2 is a critical determinant of the increase in endothelial permeability.


Sign in / Sign up

Export Citation Format

Share Document