scholarly journals Peroxisome Proliferators Attenuate Free Arachidonic Acid Pool in the Kidney Through Inducing Lysophospholipid Acyltransferases

2009 ◽  
Vol 111 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Tohru Yamazaki ◽  
Akihiko Hirose ◽  
Takeshi Sakamoto ◽  
Mari Okazaki ◽  
Atsushi Mitsumoto ◽  
...  
Author(s):  
Gema Pérez-Chacón ◽  
Alma M. Astudillo ◽  
David Balgoma ◽  
María A. Balboa ◽  
Jesús Balsinde

1987 ◽  
Author(s):  
R E Scharf ◽  
M Stockschläder ◽  
H J Reimers ◽  
W Schneider

Thromboxane (TX) synthesis of washed human platelets pretreated with high concentrations of thrombin (0.5-2.0 U/ml) for 20 sec is significantly reduced upon further thrombin stimulation. Compared to controls (tyrode-pretreated platelets), thrombin-preactivated platelets recover normal TX synthesis following exposure to exogenous arachidonic acid (AA) indicating that short-time thrombin treatment does not inactivate platelet cyclooxygenase or TX synthetase (Blood 63: 858, 1984). To evaluate whether the reduced TX synthesis upon -the second thrombin exposure is due to depletion of their AA precursor pool, thrombin-pretreated platelets and tyrode-pretreated platelets (5×108/ml) were resuspended in autologous ACD plasma and incubated at 37°C with 0.2 μCi 14C-AA (20 μM) for 60 to 90 min in the presence of PGE1 (10 μM). Mean platelet uptake of 14C-AA (disappearance of radioactivity from the supernatant) was 12+3 nmoles AA/109 platelets and did not differ significantly between thrombin-pretreated platelets and controls. Thrombin-pretreated platelets released 10% or 4.5% of their 14c-activity upon further exposure to thrombin (2 U/ml) or collagen (8 μg/ml), respectively. The release from control platelets (15% with thrombin, 6.5% with collagen) did not differ from that of thrombin-pretreated platelets. However, even after incubation in ACD plasma, thrombin-pretreated platelets continued to form significantly less TXB2 (5.0±1.6 nmoles/109 platelets) than controls (9.7±2.2 nmoles/109 platelets, p< 0.05). These data indicate that the reduced capacity of thrombin-pretreated platelets is due neither to a depletion of the endogenous AA pool nor to an inactivation of cyclooxygenase or TX synthetase. The reduced TX synthesis capacity may be caused by a modification, destruction or desensitization of the platelet thrombin receptor as a consequence of the preceding thrombin stimulation.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 941 ◽  
Author(s):  
Carlos Guijas ◽  
Miguel A. Bermúdez ◽  
Clara Meana ◽  
Alma M. Astudillo ◽  
Laura Pereira ◽  
...  

Human monocytes exposed to free arachidonic acid (AA), a secretory product of endothelial cells, acquire a foamy phenotype which is due to the accumulation of cytoplasmic lipid droplets with high AA content. Recruitment of foamy monocytes to the inflamed endothelium contributes to the development of atherosclerotic lesions. In this work, we investigated the potential role of AA stored in the neutral lipids of foamy monocytes to be cleaved by lipases and contribute to lipid mediator signaling. To this end, we used mass spectrometry-based lipidomic approaches combined with strategies to generate monocytes with different concentrations of AA. Results from our experiments indicate that the phospholipid AA pool in monocytes is stable and does not change upon exposure of the cells to the external AA. On the contrary, the AA pool in triacylglycerol is expandable and can accommodate relatively large amounts of fatty acid. Stimulation of the cells with opsonized zymosan results in the expected decreases of cellular AA. Under all conditions examined, all of the AA decreases observed in stimulated cells were accounted for by decreases in the phospholipid pool; we failed to detect any contribution of the triacylglycerol pool to the response. Experiments utilizing selective inhibitors of phospholipid or triacylglyerol hydrolysis confirmed that the phospholipid pool is the sole contributor of the AA liberated by stimulated cells. Thus, the AA in the triacylglycerol is not a source of free AA for the lipid mediator signaling during stimulation of human foamy monocytes and may be used for other cellular functions.


1981 ◽  
Vol 20 ◽  
pp. 523-529 ◽  
Author(s):  
Nicolás G. Bazán ◽  
Marta I. Aveldño de Caldironi ◽  
Elena B. Rodríguez de Turco

1986 ◽  
Vol 6 (7) ◽  
pp. 613-619 ◽  
Author(s):  
Michael P. Schrey ◽  
Alison M. Read ◽  
Philip J. Steer

The involvement of phosphoinositide hydrolysis in the action of oxytocin and vasopressin on the uterus was investigated in gestational myometrium and decidua cells by measuring the production of inositol phosphates. Both peptides stimulated a dose related increase in all three inositol phosphates in myometrium. This may be related to the control of sarcoplasmic Ca++ levels in the myometrium. Oxytocin and vasopressin also stimulated inositol 1-phosphate (IP) production in decidua cells. The hydrolysis of phosphatidylinositol by decidua homogenates exhibited a precursor-product relationship for diacylglycerol and arachidonic acid accumulation. Hence both peptides may mobilise free arachidonic acid, for prostaglandin biosynthesis, from decidua cell phosphoinositides by the sequential action of phospholipase C and diacylglycerol lipase.


Sign in / Sign up

Export Citation Format

Share Document