scholarly journals 3D-printed Arteriovenous Graft from Computational Fluidic Dynamics Simulation to Biomedical Device Development

Author(s):  
Ming-Chia Li ◽  
Chen-Ju Lee ◽  
Shih-Jou Chen ◽  
Fa-Chung Chen ◽  
Chien-Wen Lan
2016 ◽  
Vol 19 (7) ◽  
pp. A564
Author(s):  
M Alband ◽  
RM Lee ◽  
M Penny ◽  
S Brocchini ◽  
ST Hilton

Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 825
Author(s):  
Panagiotis Karayannis ◽  
Fotini Petrakli ◽  
Anastasia Gkika ◽  
Elias P. Koumoulos

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.


Author(s):  
Sebastian Hernandez ◽  
Sofiane Achiche ◽  
Daniel Spooner ◽  
Aurelian Vadean ◽  
Maxime Raison

Abstract Over the last decades, the use of multibody dynamics in biomechanics research has grown considerably and holds significant promises for the health and biomedical industries. Nowadays, it allows estimating internal data of the body that would be impractical or impossible to obtain experimentally, e.g. individual muscle forces. Also, multibody dynamics simulation allows one to constrain virtually any apparatus to the musculoskeletal system, helping to understand and improve the patient’s dynamic interactions with the device. The modeling and validation of human multibody models remain a tedious task to achieve for the research community and can vary significantly depending on the applications. Despite the advantages offered by the multibody modeling of the human body, its introduction in the biomedical engineering curriculum is not widespread. The present paper aims to evaluate the feasibility and the interest of introducing multibody modeling into multidisciplinary, real-world projects using 3D printed prototypes to add an experimental understanding of the difficulties and validation of the human body modeling. The proposed methodology is based on a literature review of the multibody dynamics teaching methods used in mechanical engineering, followed by a first pilot project and feedback from students and professors of the community through interviews. Finally, a project is proposed, using physical prototyping to support the learning.


Author(s):  
Frank Everaerts

Biomedical device development and (bio)material selection primarily for its casing go hand in hand. Traditionally “inert” materials were selected for surfaces in contact with tissue structures. Also a large number of surface treatment processes have been developed in order to increase the biocompatibility. With these technologies in hand, a broad range of materials can be selected.


Author(s):  
Panagiotis Karayannis ◽  
Fotini Petrakli ◽  
Anastasia Gkika ◽  
Elias Koumoulos

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. At first, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.


RSC Advances ◽  
2018 ◽  
Vol 8 (28) ◽  
pp. 15471-15479 ◽  
Author(s):  
Bill Cheng ◽  
Yue-Min Xing ◽  
Nai-Chia Shih ◽  
Jen-Po Weng ◽  
Hsin-Chieh Lin

An arteriovenous graft that was successfully 3D printed with a novel printing ink formulation that displayed excellent mechanical and anti-fouling properties.


Author(s):  
Elizabeth Rasmussen ◽  
Phillip Rudolph ◽  
Alexander Mamishev

Herringbone grooved journal bearings are well known for their reliability and high rotor dynamic stability thresholds. While there is a large body of research surrounding the optimized groove geometry parameters, analysis on the material the groves are placed on has been mainly limited to metals. The ability to use plastic while maintaining desired qualities of reliability and stability is of great interest due to its light weight and low cost possibilities. The goal of the current study is to see if current technology limits on plastic 3D printed parts layer thickness inhibit lubricant flow, or if 3D printed parts can be used as an alternative choice in manufacturing journal bearings. The optimum geometries for square, circular, and beveled step groove profiles were 3D printed with layer thicknesses of 16, 50, 100, and 250 micrometers. Additionally, the effect of herringbone groove parameters such as groove width ratio, groove depth ratio, and groove angle were explored. Finally, a 2-dimentional Computational Fluid Dynamics simulation of a square, circular, and beveled step herringbone groove geometry velocity magnitude profiles are presented.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3413
Author(s):  
Shah Uddin ◽  
Abkar Sayad ◽  
Jianxiong Chan ◽  
Duc Huynh ◽  
Efstratios Skafidas ◽  
...  

HLA-B*15:02 screening before administering carbamazepine is recommended to prevent life-threatening hypersensitivity. However, the unavailability of a point-of-care device impedes this screening process. Our research group previously developed a two-step HLA-B*15:02 detection technique utilizing loop-mediated isothermal amplification (LAMP) on the tube, which requires two-stage device development to translate into a portable platform. Here, we report a heater-integrated lab-on-a-chip device for the LAMP amplification, which can rapidly detect HLA-B alleles colorimetrically. A gold-patterned micro-sized heater was integrated into a 3D-printed chip, allowing microfluidic pumping, valving, and incubation. The performance of the chip was tested with color dye. Then LAMP assay was conducted with human genomic DNA samples of known HLA-B genotypes in the LAMP-chip parallel with the tube assay. The LAMP-on-chip results showed a complete match with the LAMP-on-tube assay, demonstrating the detection system’s concurrence.


Sign in / Sign up

Export Citation Format

Share Document