scholarly journals 3D Printed Lab-on-a-Chip Diagnostic Systems - Developing a Safe-by-Design Manufacturing Approach

Author(s):  
Panagiotis Karayannis ◽  
Fotini Petrakli ◽  
Anastasia Gkika ◽  
Elias Koumoulos

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. At first, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.

Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 825
Author(s):  
Panagiotis Karayannis ◽  
Fotini Petrakli ◽  
Anastasia Gkika ◽  
Elias P. Koumoulos

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoran Wang ◽  
Anton Enders ◽  
John-Alexander Preuss ◽  
Janina Bahnemann ◽  
Alexander Heisterkamp ◽  
...  

Abstract3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig–zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3413
Author(s):  
Shah Uddin ◽  
Abkar Sayad ◽  
Jianxiong Chan ◽  
Duc Huynh ◽  
Efstratios Skafidas ◽  
...  

HLA-B*15:02 screening before administering carbamazepine is recommended to prevent life-threatening hypersensitivity. However, the unavailability of a point-of-care device impedes this screening process. Our research group previously developed a two-step HLA-B*15:02 detection technique utilizing loop-mediated isothermal amplification (LAMP) on the tube, which requires two-stage device development to translate into a portable platform. Here, we report a heater-integrated lab-on-a-chip device for the LAMP amplification, which can rapidly detect HLA-B alleles colorimetrically. A gold-patterned micro-sized heater was integrated into a 3D-printed chip, allowing microfluidic pumping, valving, and incubation. The performance of the chip was tested with color dye. Then LAMP assay was conducted with human genomic DNA samples of known HLA-B genotypes in the LAMP-chip parallel with the tube assay. The LAMP-on-chip results showed a complete match with the LAMP-on-tube assay, demonstrating the detection system’s concurrence.


2019 ◽  
Vol 2 (2) ◽  
pp. 10-19
Author(s):  
Alper Baran Sözmen ◽  
Ahu Arslan Yildiz

Nanotechnological approaches are the latest modality for early stage detection of cancer. The need of rapid, non-invasive, patient specific, and informative techniques in cancer diagnostics lead to the utilization of nanotechnology, microfluidics, and lab-on-a-chip platforms for liquid biopsy, and the developments through these technologies increased the knowledge also for case specific applications. In this review, nanotechnology-based methodologies that are developed in the last decade for cancer diagnostics are investigated and are discussed under four main categories for the purpose of simplification as; nanochip based, nanofilm based, magnetic nanomaterial-based methods, and combinational utilization of multiple methodologies. We suggest a combinational approach on device development with an aim of producing a compact, cost effective, rapid, sensitive, and non-invasive diagnostic device as a conclusion of literature review.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 821
Author(s):  
Dipankar Mitra ◽  
Sayan Roy ◽  
Ryan Striker ◽  
Ellie Burczek ◽  
Ahsan Aqueeb ◽  
...  

As the usage of wireless technology grows, it demands more complex architectures and conformal geometries, making the manufacturing of radio frequency (RF) systems challenging and expensive. The incorporation of emerging alternative manufacturing technologies, like additive manufacturing (AM), could consequently be a unique and cost-effective solution for flexible RF and microwave circuits and devices. This work presents manufacturing methodologies of 3D-printed conformal microstrip antennas made of a commercially available conductive filament, Electrifi, as the conductive trace on a commercially available nonconductive filament, NinjaFlex, as the substrate using the fused filament fabrication (FFF) method of AM technology. Additionally, a complete high frequency characterization of the prototyped antenna was studied and presented here through a comparative analysis between full-wave simulation and measurements in a fully calibrated anechoic chamber. The prototyped antenna measures 65.55 × 55.55 × 1.2 mm3 in size and the measured results show that the 3D-printed Electrifi based patch antenna achieved very good impedance matching at a resonant frequency of 2.4 GHz and a maximum antenna gain of −2.78 dBi. Finally, conformality performances of the developed antenna were demonstrated by placing the antenna prototype on five different cylindrical curved surfaces for possible implementation in flexible electronics, smart communications, and radar applications.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Tochukwu Moses ◽  
David Heesom ◽  
David Oloke ◽  
Martin Crouch

The UK Construction Industry through its Government Construction Strategy has recently been mandated to implement Level 2 Building Information Modelling (BIM) on public sector projects. This move, along with other initiatives is key to driving a requirement for 25% cost reduction (establishing the most cost-effective means) on. Other key deliverables within the strategy include reduction in overall project time, early contractor involvement, improved sustainability and enhanced product quality. Collaboration and integrated project delivery is central to the level 2 implementation strategy yet the key protocols or standards relative to cost within BIM processes is not well defined. As offsite construction becomes more prolific within the UK construction sector, this construction approach coupled with BIM, particularly 5D automated quantification process, and early contractor involvement provides significant opportunities for the sector to meet government targets. Early contractor involvement is supported by both the industry and the successive Governments as a credible means to avoid and manage project risks, encourage innovation and value add, making cost and project time predictable, and improving outcomes. The contractor is seen as an expert in construction and could be counter intuitive to exclude such valuable expertise from the pre-construction phase especially with the BIM intent of äóÖbuild it twiceäó», once virtually and once physically. In particular when offsite construction is used, the contractoräó»s construction expertise should be leveraged for the virtual build in BIM-designed projects to ensure a fully streamlined process. Building in a layer of automated costing through 5D BIM will bring about a more robust method of quantification and can help to deliver the 25% reduction in overall cost of a project. Using a literature review and a case study, this paper will look into the benefits of Early Contractor Involvement (ECI) and the impact of 5D BIM on the offsite construction process.


2020 ◽  
Vol 36 ◽  
pp. 101544
Author(s):  
Devin J. Roach ◽  
Christopher Roberts ◽  
Janet Wong ◽  
Xiao Kuang ◽  
Joshua Kovitz ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 8967
Author(s):  
Victor Gil Muñoz ◽  
Luisa M. Muneta ◽  
Ruth Carrasco-Gallego ◽  
Juan de Juanes Marquez ◽  
David Hidalgo-Carvajal

The circular economy model offers great opportunities to companies, as it not only allows them to capture additional value from their products and materials, but also reduce the fluctuations of price-related risks and material supply. These risks are present in all kind of businesses not based on the circular economy. The circular economy also enables economic growth without the need for more resources. This is because each unit has a higher value as a result of recycling and reuse of products and materials after use. Following this circular economics framework, the Polytechnic University of Madrid (Universidad Politécnica de Madrid, UPM) has adopted strategies aimed at improving the circularity of products. In particular, this article provides the result of obtaining recycled PLA filament from waste originating from university 3D FFF (fused filament fabrication) printers and waste generated by “Coronamakers” in the production of visors and parts for PPEs (Personal Protective Equipment) during the lockdown period of COVID-19 in Spain. This filament is used in the production of 3D printed parts that university students use in their classes, so the circular loop is closed. The obtained score of Material Circularity Indicator (MCI) of this material has been calculated, indicating its high level of circularity.


Sign in / Sign up

Export Citation Format

Share Document