The Use of Visible and near Infrared Spectroscopy to Classify the Floral Origin of Honey Samples Produced in Uruguay

2005 ◽  
Vol 13 (2) ◽  
pp. 63-68 ◽  
Author(s):  
E. Corbella ◽  
D. Cozzolino

This study reports the use of visible (vis) and near infrared (NIR) spectroscopy as a tool to classify honey samples from Uruguay, according to their floral origin. Classification models were developed using principal component analysis, discriminant partial least squares (DPLS) regression and linear discriminant analysis (LDA). Honey samples ( n = 50) from two floral origins, namely Eucalyptus spp. and pasture, were split randomly into even calibration ( n = 25) and validation sets ( n = 25). Both LDA and DPLS models correctly classified, on average, more than 75% of the honey samples belonging to pasture and more than 85% of the honey samples belonging to Eucalyptus spp. These results showed that vis-NIR might be a suitable and alternative method that can easily be implemented by both the industry and retailers to classify samples according their floral origin. Vis-NIR analysis requires little sample preparation and is rapid. However, the relatively limited number of samples involved in the present work led us to be cautious in terms of extrapolating the results of this work to other floral types.


2013 ◽  
Vol 710 ◽  
pp. 524-528 ◽  
Author(s):  
Xiao Hong Wu ◽  
Xing Xing Wan ◽  
Bin Wu ◽  
Fan Wu

Classification of apple is an important link in postharvest commercialization processing. To realize the non-destructive, rapid and effective discrimination of apple fruits, the near infrared reflectance spectra of four varieties of apples were collected using near infrared spectroscopy, reduced by principal component analysis (PCA) and used to extract the discriminant information by linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), fuzzy discriminant analysis (FDA) and Foley-Sammon discriminant analysis. Finally k-nearest neighbor finished the classification. The classification results showed that FDA could extract the discriminant information of NIR spectra more effectively, and achieved the highest classification accuracy.



2018 ◽  
Vol 11 (02) ◽  
pp. 1750019 ◽  
Author(s):  
Ravipat Lapcharoensuk ◽  
Natrapee Nakawajana

This research aimed to establish near infrared (NIR) spectroscopy models for identification of syrup types in which the maple syrup was discriminated from other syrup types. Thirty syrup types were used in this research; the NIR spectra of each type were recorded with 10 replicates. The repeatability and reproducibility of NIR scanning were performed, and the absorbance at 6940[Formula: see text]cm[Formula: see text] was used for calculation. Principal component analysis was used to group the syrup type. Identification models were developed by soft independent modeling by class analogy (SIMCA) and partial least-squares discriminant analysis (PLS-DA). The SIMCA models of all syrup types exhibited accuracy percentage of 93.3–100% for identifying syrup types, whereas maple syrup discrimination models showed percentage of accuracy between 83.2% and 100%. The PLS-DA technique gave the accuracy of syrup types classification between 96.6% and 100% and presented ability on discrimination of maple syrup form other types of syrup with accuracy of 100%. The finding presented the potential of NIR spectroscopy for the syrup type identification.



2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.



2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.



2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Noman Naseer ◽  
Nauman Khalid Qureshi ◽  
Farzan Majeed Noori ◽  
Keum-Shik Hong

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that thepvalues were statistically significant relative to all of the other classifiers (p< 0.005) using HbO signals.



2013 ◽  
Vol 834-836 ◽  
pp. 935-938
Author(s):  
Lian Shun Zhang ◽  
Chao Guo ◽  
Bao Quan Wang

In this paper, the liquor brands were identified based on the near infrared spectroscopy method and the principal component analysis. 60 samples of 6 different brands liquor were measured by the spectrometer of USB4000. Then, in order to eliminate the noise caused by the external factors, the smoothing method and the multiplicative scatter correction method were used. After the preprocessing, we got the revised spectra of the 60 samples. The difference of the spectrum shape of different brands is not much enough to classify them. So the principal component analysis was applied for further analysis. The results showed that the first two principal components variance contribution rate had reached 99.06%, which can effectively represent the information of the spectrums after preprocessing. From the scatter plot of the two principal components, the 6 different brands of liquor were identified more accurate and easier than the spectra curves.



2021 ◽  
Author(s):  
Silvana Nisgoski ◽  
Thaís A P Gonçalves ◽  
Júlia Sonsin-Oliveira ◽  
Adriano W Ballarin ◽  
Graciela I B Muñiz

Abstract The illegal charcoal trade is an internationally well-known forest crime. In Brazil, government agents try to control it using the document of forest origin (DOF). To confirm a load’s legality, the agents must compare it with the declared content of the DOF. However, to identify charcoal is difficult even for specialists in wood anatomy. Hence, new technologies would facilitate the agents’ work. Near-infrared spectroscopy (NIR) provides a rapid and precise response to differentiate carbonized species. Considering the rich Brazilian flora, NIR studies are still underdeveloped. Our work aimed to differentiate charcoals of seven eucalypts and 10 Cerrado species based on NIR analysis and to add information to a charcoal database. Data were collected with a spectrophotometer in reflectance mode. Partial least square regression with discriminant analysis (PLS-DA) and a linear discriminant analysis (LDA) was applied to confirm the performance and potential of NIR spectra to distinguish native Cerrado species from eucalyptus species. Wavenumbers from 4,000 to 6,000 cm−1 and transversal surface presented the best results. NIR had the potential to distinguish eucalypt charcoals from Cerrado species and in comparison to reference samples. NIR is a potential tool for forestry supervision to guarantee the sustainability of the charcoal supply in Brazil and countries with similar conditions. Study Implications It is a challenge to protect the Cerrado biome against deforestation for charcoal production. The application of new technologies such as near-infrared spectroscopy (NIR) for charcoal identification might improve the work of government agents. In this article, we studied the spectra of Cerrado and eucalypt species. Our results present good separation between the analyzed groups. The main goal is to develop a reliable NIR database that would be useful in the practical work of agents. The database will be available for all control agencies, and future training will be done for a rapid initial evaluation in the field.



2019 ◽  
Vol 27 (4) ◽  
pp. 286-292
Author(s):  
Chongchong She ◽  
Min Li ◽  
Yunhui Hou ◽  
Lizhen Chen ◽  
Jianlong Wang ◽  
...  

The solidification point is a key quality parameter for 2,4,6-trinitrotoluene (TNT). The traditional solidification point measurement method of TNT is complicated, dangerous, not environmentally friendly and time-consuming. Near infrared spectroscopy (NIR) analysis technology has been applied successfully in the chemical, petroleum, food, and agriculture sectors owing to its characteristics of fast analysis, no damage to the sample and online application. The purpose of this study was to study near infrared spectroscopy combined with chemometric methods to develop a fast and accurate quantitative analysis method for the solidification point of TNT. The model constructed using PLS regression was successful in predicting the solidification point of TNT ([Formula: see text] = 0.999, RMSECV = 0.19, RPDCa = 33.5, [Formula: see text] = 0.19, [Formula: see text] = 0.999). Principal component analysis shows that the model could identify samples from different reactors. The results clearly demonstrate that the solidification point can be measured in a short time by NIR spectroscopy without any pretreatment for the sample and skilled laboratory personnel.



Sign in / Sign up

Export Citation Format

Share Document