Dendritic cells derived from HOXB4-immortalized hematopoietic bone marrow cells

2011 ◽  
Vol 236 (11) ◽  
pp. 1291-1297 ◽  
Author(s):  
Abdul Mannan Baru ◽  
Jayendra Kumar Krishnaswamy ◽  
Anchana Rathinasamy ◽  
Michaela Scherr ◽  
Matthias Eder ◽  
...  

Dendritic cells (DCs) are essential for the generation and modulation of cell-mediated adaptive immunity against infections. DC-based vaccination involves transplantation of ex vivo-generated DCs loaded with antigen in vitro, but remains limited by the number of autologous or allogeneic cells. While in vitro expansion and differentiation of hematopoietic stem cells (HSCs) into DCs seems to be the most viable alternative to overcome this problem, the complexity of HSC expansion in vitro has posed significant limitations for clinical application. We immortalized lineage-depleted murine hematopoietic bone marrow (lin−BM) cells with HOXB4, and differentiated them into CD11c+MHCII+ DCs. These cells showed the typical DC phenotype and upregulated surface expression of co-stimulatory molecules on stimulation with various toll-like receptor ligands. These DCs efficiently presented exogenous antigen to T-cells via major histocompatibility complex (MHC) I and II and viral antigen on infection. Finally, they showed migratory capacity and were able to generate antigen-specific primed T-cells in vivo. In summary, we provide evidence that HOXB4-transduced lin−BM cells can serve as a viable means of generating fully functional DCs for scientific and therapeutic applications.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4063-4063 ◽  
Author(s):  
Renier Myburgh ◽  
Jonathan Kiefer ◽  
Norman F Russkamp ◽  
Alexander Simonis ◽  
Surema Pfister ◽  
...  

Abstract Introduction: Acute Myeloid Leukemia (AML) is a clonal disease of the hematopoietic system that originates from immature hematopoietic stem and progenitor cells (HSPC). Because some AML-initiating cells are comparatively resistant to conventional cytotoxic agents, disease relapses are common with current treatment approaches. As an alternative, immunological eradication of leukemic cells by adoptively transferred chimeric-antigen receptor T-cells (CAR T-cells) might be considerably more efficient. To date, however, the search for AML-specific surface antigens has remained largely elusive. To circumvent this problem, we propose to target the stem cell antigen c-Kit (CD117) that is expressed by physiological HSPC as wells as by leukemic blasts in >90% of AML patients. For translation into a clinical setting, CAR T cell treatment must then be followed by depletion of CAR T-cells as well subsequent healthy/allogeneic HSC transplantation. Methods: A lentiviral vector was generated which incorporates the CAR (scFv linked to intracellular CD3ζ and 4-1BB signaling domains via stalk and transmembrane regions derived from CD8), followed by a T2A ribosomal skip sequence and RQR8 as selection marker and depletion gene (surface expression of CD34 and CD20 epitopes). The scFv was extracted from a previously published bivalent anti-CD117 antibody (clone 79D) that was derived from an artificial human phage library (Reshetnyak et al., PNAS, 2013). 79D exhibits high binding affinity to an epitope in the membrane-proximal domain of human CD117. Human CD117 was cloned in human CD117 negative HL-60 AML cells and cell lines with stable expression of CD117 at various levels were derived from these. Results: T-cells were isolated from healthy donors or AML patients in complete remission and both healthy donor and AML pateint derived T-cells exhibited sustained growth after activation with recombinant human IL-2 and CD3/CD28 beads. Lentiviral transduction yielded consistently high transduction rates, ranging from 55 - 75% as determined by staining for RQR8 and the scFv. In co-culture assays, CAR T-cells eliminated more than 90% of CD117high leukemia cell lines within 24 hours at effector-to target ratios (E:T) of 4:1 and 1:1 and more than 50% at E:T of 1:4. CAR-mediated cytotoxicity correlated with levels of CD117 surface expression as the elimination of CD117low target cells was less efficient compared to CD117high and CD117intermediate cells. In long-term cytotoxicity assays (45d), only CD117low cells were able to escape CAR-mediated killing. In the setting of primary cells, anti-CD117 CAR T-cells effectively depleted >90% of lin-CD117+CD34+CD38+ and >70% of lin-CD117+CD34+CD38- cells from healthy bone marrow in vitro within 48 hours. Similarly, >70% of patient derived leukemic blasts were eliminated by autologous anti-CD117 CAR T-cells within 48 hours (1:1 ratio of CAR T cells:blasts). In a long-term assay, no outgrowth of leukemic blasts was observed in the presence of autologous CAR T-cells over 3 weeks. To determine effectivity of CAR T-cells in vivo, humanized mice (NSG & MTRG-SKI) were engrafted with umbilical cord blood derived CD34+ cells. A single injection of 2x106 anti-CD117 CAR T-cells resulted in >90% depletion of CD117+ cells in the bone marrow within 6 days. Finally, humanized mice transplanted with bone marrow from AML patients expressing CD117 were treated with patient-derived autologous CAR T-cells. At 6 weeks after injection of CAR T-cells, >98% of hu-CD45 CD117+ cells were depleted in the bone marrow while control human T-cell treated mice showed full-blown CD117 positive AML. Conclusions: We provide proof of concept for the generation of highly-potent CAR T-cells re-directed against CD117 from healthy human donors and AML patients. Anti-CD117 CAR T-cells exhibit high cytotoxic activity against CD117+ cell lines as well as primary healthy HSPC and patient AML cells in vitro and in vivo in murine xenograft models. Strategies for the complete elimination of CAR T-cells (immunologic or small molecule based) are required before translation of this approach to the clinical setting. Disclosures Neri: Philochem AG: Equity Ownership.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Lupus ◽  
2017 ◽  
Vol 27 (1) ◽  
pp. 49-59 ◽  
Author(s):  
X Yang ◽  
J Yang ◽  
X Li ◽  
W Ma ◽  
H Zou

Background The objective of this paper is to analyze the role of bone marrow-derived mesenchymal stem cells (BM-MSCs) on the differentiation of T follicular helper (Tfh) cells in lupus-prone mice. Methods Bone marrow cells were isolated from C57BL/6 (B6) mice and cultured in vitro, and surface markers were identified by flow cytometry. Naïve CD4+ T cells, splenocytes and Tfh cells were isolated from B6 mice spleens and co-cultured with BM-MSCs. The proliferation and the differentiation of CD4+ T cells and Tfh cells were analyzed by flow cytometry. Lupus-prone MRL/Mp-lpr/lpr (MRL/lpr) mice were treated via intravenous injection with expanded BM-MSCs, the differentiation of Tfh cells was detected, and the relief of lupus nephritis was analyzed. Results MSCs could be successfully induced from bone marrow cells, and cultured BM-MSCs could inhibit T cell proliferation dose-dependently. BM-MSCs could prevent Tfh cell development from naïve CD4+ T cells and splenocytes. BM-MSCs could inhibit IL-21 gene expression and cytokine production and inhibit isolated Tfh cells and STAT3 phosphorylation. In vivo study proved that BM-MSCs intravenous injection could effectively inhibit Tfh cell expansion and IL-21 production, alleviate lupus nephritis, and prolong the survival rate of lupus-prone mice. Conclusions BM-MSCs could effectively inhibit the differentiation of Tfh cells both in vitro and in vivo. BM-MSC treatment could relieve lupus nephritis, which indicates that BM-MSCs might be a promising therapeutic method for the treatment of SLE.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3808-3808
Author(s):  
Zhen Cai ◽  
Wenye Huang ◽  
Wenji Sun

Abstract Mycophenolate mofetil (MMF) is a newly developed immunosuppressor, currently widely used in allogeneic bone marrow transplantation. Its active metabolite, mycophenolic acid (MPA) is a noncompetitive, reversible inhibitor of the enzyme inosine 59-monophosphate dehydrogenase, which plays a major role in the de novo synthesis of guanosine nucleotides. Unlike other cells that also use the salvage pathway for purine biosynthesis, proliferating B and T cells are dependent on the de novo pathway generate guanosine. Thus, MMF exerts its immunosuppressive effects of lymphocyte proliferation. Recently, some studies found that MPA could inhibit the immun immune function of antigen presenting cells. Dendritic cells (DCs), the most potent antigen presenting cells with the unique ability to prime naive T cells, play a central role in antigen processing and presentation to induce T cell response in vitro and in vivo. This study is to evaluate the effects of MPA, the in vivo active metabolite of MMF, on the maturation and immune function of murine bone marrow-derived dendritic cells, and to explore the underlying mechanisms of MMF in graft versus host disease. Bone marrow-derived dendritic cells (DC) were cultured with GM-CSF and IL-4 in the presence of MPA at doses of 0.01 and 0.1μmol/L. The ability of the allostimulatory activities of the DCs on allogeneic T cells was assessed by MLR. IL-12 production in culture supernatant and the Th1/Th2 cytokines such as IL-2, IFN-g, IL-4 and IL-10 levels in mixed lymphocyte reaction (MLR) supernatant were examined by ELISA assays. The activity of NF-κB in DCs was measured with Western blot assays. Our results showed that DCs cultured in the presence of MPA expressed lower levels of CD40, CD80 and CD86, exhibited weaker activity of stimulating the allogeneic T cell proliferation and weaker in antigen presenting function with a concurrent reduction of IL-12 production. MPA-treated DCs stimulated allogeneic T cells to secrete higher levels of Th2 cytokines IL-4 and IL-10 but lower levels of Th1 cytokines IL-2 and IFN-g than did DCs not treated with MPA. The activity of NF-κB was decreased in DCs treated with MPA in a dose-dependent manner. We conclude that MPA, and hence MMF, exerts a negative effect on the maturation and immune function of in vitro cultured DCs, and drives a shift of Th1 cytokines to Th2 cytokines in MLR. This negative effect is associated with a decrease in NF-κB activity. Say something about the significance of this finding regarding GVHD.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3077-3077
Author(s):  
Xiao-hui Zhang ◽  
Guo-xiang Wang ◽  
Yan-rong Liu ◽  
Lan-Ping Xu ◽  
Kai-Yan Liu ◽  
...  

Abstract Abstract 3077 Background: Since prolonged thrombocytopenia (PT) is an independent risk factor for poor clinical outcome after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the underlying mechanisms need to be understood in order to develop selective treatments. Previous studies1–4 have suggested that abnormalities in B cells may play a role in the pathogenesis of PT. However, abnormalities in B cells alone do not fully explain the complete pathogenic mechanisms of PT. Our previous studies5 showed that the frequency of megakaryocytes with a ploidy value ≤ 8N was significantly increased in patients who developed PT after allo-HSCT compared to the control group. Mechanisms concerning the megakaryocyte hypoplasia in PT after allo-HSCT are not well understood. Design and Methods: PT was defined as a platelet count ≤80 × 109/L for more than 3 months after HSCT, recovery of all other cell counts, and no apparent cause for thrombocytopenia, such as aGVHD, disease recurrence, CMV infection, or antiviral drug treatment at three months post-HSCT when all other blood cell counts had return to normal.5 We analyzed T cell subsets in bone marrow (BM) and peripheral blood (PB) from allo-HSCT recipients with and without PT (n = 23 and 17, respectively) and investigated the expression characteristics of homing receptors CX3CR1, CXCR4 and VLA-4 by flow cytometry. Futhermore, Mononuclear cells (MNCs) from PT patients and controls were cultured with and without autologous CD8+ T cells in vitro, and clarify the effect of activated CD8+ T cells on the ploidy and apoptosis of megakaryocytes in the bone marrow. Results: The results demonstrated that the percentage of CD3+ T cells in the BM was significantly higher in PT patients than the experimental controls (76.00 ± 13.04% and 57.49 ± 9.11%, respectively, P < 0.001), whereas this difference was not significant for the PB (71.01 ± 11.49% and 70.49 ± 12.89%, respectively, P = 0.911). While, some T cell subsets in the BM and PB from allo-HSCT recipients with PT were not significantly different from that of the experimental control group, such as CD8+ T cells, CD4+ T cells, CD4+ CD25bright T cells (regulatory T cells), CD44hi CD62Llo CD8+ T cells and naive T cells (CD11a+ CD45RA+). Furthermore, the surface expression of homing receptor CX3CR1 on BM T cells (64.16 ± 14.07% and 37.45 ± 19.66%, respectively, P < 0.001) and CD8+ T cells (56.25 ± 14.54% and 35.16 ± 20.81%, respectively, P = 0.036), but not in blood, were significantly increased in PT patients compared to controls. For these two groups of patients, the surface expression of CXCR4 and VLA-4 on T cells and CD8+ T cells from both BM and PB did not show significant differences. Through the study in vitro, we found that the activated CD8+ T cells in bone marrow of patients with PT might suppress apoptosis (MNC group and Co-culture group: 18.02 ± 3.60% and 13.39 ± 4.22%, P < 0.05, respectively) and Fas expression (MNC group and Co-culture group: 21.10 ± 3.93 and 15.10 ± 2.33, P <0.05, respectively) of megakaryocyte. In addition, megakaryocyte with a ploidy value ≤ 8N (MNC group: 40.03 ± 6.42% and 24.54 ± 4.31%, respectively, P < 0.05) was significantly increased in patients with PT compared to the control group. Conclusions: In conclusion, an increased surface expression of CX3CR1 on T cells may mediate the recruitment of CD8+ T cells into the bone marrow in patients with PT who received an allo-HSCT. Moreover, CD8+CX3CR1+ T cells, which can have significantly increased numbers in bone marrow of patients with PT, likely caused a reduction in the megakaryocyte ploidy, and suppressed megakaryocyte apoptosis via CD8+ T cell-mediated cytotoxic effect, possibly leading to impaired platelet production. Therefore, treatment targeting CX3CR1 should be considered as a reasonable therapeutic strategy for PT following allo-HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3212-3221 ◽  
Author(s):  
Esther Bachar-Lustig ◽  
Hong Wei Li ◽  
Hilit Gur ◽  
Rita Krauthgamer ◽  
Hadar Marcus ◽  
...  

Induction of transplantation tolerance by means of bone marrow (BM) transplantation could become a reality if it was possible to achieve engraftment of hematopoietic stem cells under nonlethal preparatory cytoreduction of the recipient. To that end, BM facilitating cells, veto cells, or other tolerance-inducing cells, have been extensively studied. In the present study, we show that BM cells within the Sca-1+Lin− cell fraction, previously shown to be enriched for early hematopoietic progenitors, are capable of reducing specifically antidonor CTL-p frequency in vitro and in vivo, and of inducing split chimerism in sublethally 7-Gy–irradiated recipient mice across major histocompatibility complex barriers. The immune tolerance induced by the Sca-1+Lin−cells was also associated with specific tolerance toward donor-type skin grafts. The minimal number of cells required to overcome the host immunity remaining after 7 Gy total body irradiation is very large and, therefore, it may be very difficult to harvest sufficient cells for patients. This challenge was further addressed in our study by demonstrating that non-alloreactive (host × donor)F1 T cells, previously shown to enhance T-cell–depleted BM allografts in lethally irradiated mice, synergize with Sca-1+Lin− cells in their capacity to overcome the major transplantation barrier presented by the sublethal mouse model.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Sign in / Sign up

Export Citation Format

Share Document