scholarly journals Optimisation of Wind Turbine Inspection Intervals

2008 ◽  
Vol 32 (5) ◽  
pp. 477-490 ◽  
Author(s):  
Jesse A. Andrawus ◽  
John Watson ◽  
Mohammed Kishk ◽  
Heather Gordon

The choice of correct inspection intervals poses a serious challenge to industries that utilise physical assets. Too short an interval increases operational cost and waste production time while too long an interval increases the likelihood of unexpected asset failures. Failure Modes and Effect Criticality Analysis (FMECA) is a technique that permits qualitative evaluation of assets' functions to predict critical failure modes and the resultant consequences to determine appropriate maintenance tasks for the assets. The Delay-Time Maintenance Model (DTMM) is a quantitative maintenance optimisation technique that examines equipment failure patterns by taking into account failure consequences, inspection time and cost in order to determine optimum inspection interval. In this paper, a hybrid of FMECA and DTMM is used to assess the failure characteristics of a selected subsystems of a chosen wind turbine. Optimal inspection intervals for critical subsystems of the wind turbine are determined to minimise its total life-cycle cost.

2021 ◽  
pp. 0309524X2199245
Author(s):  
Kawtar Lamhour ◽  
Abdeslam Tizliouine

The wind industry is trying to find tools to accurately predict and know the reliability and availability of newly installed wind turbines. Failure modes, effects and criticality analysis (FMECA) is a technique used to determine critical subsystems, causes and consequences of wind turbines. FMECA has been widely used by manufacturers of wind turbine assemblies to analyze, evaluate and prioritize potential/known failure modes. However, its actual implementation in wind farms has some limitations. This paper aims to determine the most critical subsystems, causes and consequences of the wind turbines of the Moroccan wind farm of Amougdoul during the years 2010–2019 by applying the maintenance model (FMECA), which is an analysis of failure modes, effects and criticality based on a history of failure modes occurred by the SCADA system and proposing solutions and recommendations.


2021 ◽  
Vol 11 (4) ◽  
pp. 1527 ◽  
Author(s):  
Helge Nordal ◽  
Idriss El-Thalji

Dependability analyses in the design phase are common in IEC 60300 standards to assess the reliability, risk, maintainability, and maintenance supportability of specific physical assets. Reliability and risk assessment uses well-known methods such as failure modes, effects, and criticality analysis (FMECA), fault tree analysis (FTA), and event tree analysis (ETA)to identify critical components and failure modes based on failure rate, severity, and detectability. Monitoring technology has evolved over time, and a new method of failure mode and symptom analysis (FMSA) was introduced in ISO 13379-1 to identify the critical symptoms and descriptors of failure mechanisms. FMSA is used to estimate monitoring priority, and this helps to determine the critical monitoring specifications. However, FMSA cannot determine the effectiveness of technical specifications that are essential for predictive maintenance, such as detection techniques (capability and coverage), diagnosis (fault type, location, and severity), or prognosis (precision and predictive horizon). The paper proposes a novel predictive maintenance (PdM) assessment matrix to overcome these problems, which is tested using a case study of a centrifugal compressor and validated using empirical data provided by the case study company. The paper also demonstrates the possible enhancements introduced by Industry 4.0 technologies.


Author(s):  
Samet Ozturk ◽  
Vasilis Fthenakis ◽  
Stefan Faulstich

The wind industry is looking for ways to accurately predict the reliability and availability of newly installed wind turbines. Failure modes, effects and criticality analysis (FMECA) is a technique utilized for determining the critical subsystems of wind turbines. There are several studies which applied FMECA for wind turbines in the literature, but no studies so far have considered different weather conditions or climatic regions. Furthermore, various design types of wind turbines have been analyzed applying FMECA but no study so far has applied FMECA to compare the reliability of geared and direct-drive wind turbines. We propose to fill these gaps by using Koppen-Geiger climatic regions and two different turbine models of direct-drive and geared-drive concepts. A case study is applied on German wind farms utilizing the WMEP database which contains wind turbine failure data from 1989 to 2008. This proposed methodology increases the accuracy of reliability and availability predictions and compares different wind turbine design types and eliminates underestimation of impacts of different weather conditions.


2011 ◽  
Vol 291-294 ◽  
pp. 2215-2221 ◽  
Author(s):  
Jang Shyong You ◽  
Wen Fang Wu

The purpose of the present study is to carry out failure analysis of a scooter’s continuously variable transmission (CVT) system that is considered to be one of the key components of the scooter. In the study, several reliability analytical tools such as failure mode, effect and criticality analysis (FMECA) and fault tree analysis (FTA) are used to identify possible failure modes of the CVT system and its subsystems. The failure effects of components on the CVT system are emphasized in particular. Aside from the qualitative evaluation, simulation algorithms are developed to examine the performance of the CVT system and assess the reliability of the belt. Through the study, it is found that mechanical wear at both sides of the V-belt is the most serious problem that affects the CVT performance. The sliding collar of the driven pulley is another component that has to be observed carefully. Some design improvements are pointed out at the end of the paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Rim Bakhat ◽  
Mohammed Rajaa

Clean energy has become a growing concern, and many organizations pay attention to environmental protection and energy production as well. In the last few decades, the wind turbine has become the core of clean energy production and has advanced in generating electricity from 40 kW to 5 mW. However, the new design of the wind turbine causes several potential failures which frequently lead to the inability to accomplish the operational requirements intended to meet the customers’ expectations. As a solution to this problem, the present paper proposes a novel systematic approach that combines Multicriteria Decision-Making (MCDM) techniques and Failure Mode Effects and Criticality Analysis (FMECA) tool to reveal the fatal failures and optimize the maintenance actions. To further develop the preceding framework, this work will not only rely on the three risk factors that are involved in the traditional Risk Priority Numbers (RPN) approach but also will consider the economic aspect of the system. In the proposed approach, the grey Analytic Hierarchy Process (AHP) method is applied in the first place to calculate the weights of the four risk factors criteria. Second, the grey Multiattribute Border Approximation area Comparison (MABAC) technique is applied to rank the failure modes and their criticality on the whole system. The proposed model is verified within an organization of renewable energy production in Morocco. Furthermore, the results of the comparative and the sensitivity analysis affirm that the proposed research framework is adequate for enhancing other complex systems design, especially in a developing world where funds and resources are scarce.


2020 ◽  
Vol 13 (3) ◽  
pp. 381-393
Author(s):  
Farhana Fayaz ◽  
Gobind Lal Pahuja

Background:The Static VAR Compensator (SVC) has the capability of improving reliability, operation and control of the transmission system thereby improving the dynamic performance of power system. SVC is a widely used shunt FACTS device, which is an important tool for the reactive power compensation in high voltage AC transmission systems. The transmission lines compensated with the SVC may experience faults and hence need a protection system against the damage caused by these faults as well as provide the uninterrupted supply of power.Methods:The research work reported in the paper is a successful attempt to reduce the time to detect faults on a SVC-compensated transmission line to less than quarter of a cycle. The relay algorithm involves two ANNs, one for detection and the other for classification of faults, including the identification of the faulted phase/phases. RMS (Root Mean Square) values of line voltages and ratios of sequence components of line currents are used as inputs to the ANNs. Extensive training and testing of the two ANNs have been carried out using the data generated by simulating an SVC-compensated transmission line in PSCAD at a signal sampling frequency of 1 kHz. Back-propagation method has been used for the training and testing. Also the criticality analysis of the existing relay and the modified relay has been done using three fault tree importance measures i.e., Fussell-Vesely (FV) Importance, Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW).Results:It is found that the relay detects any type of fault occurring anywhere on the line with 100% accuracy within a short time of 4 ms. It also classifies the type of the fault and indicates the faulted phase or phases, as the case may be, with 100% accuracy within 15 ms, that is well before a circuit breaker can clear the fault. As demonstrated, fault detection and classification by the use of ANNs is reliable and accurate when a large data set is available for training. The results from the criticality analysis show that the criticality ranking varies in both the designs (existing relay and the existing modified relay) and the ranking of the improved measurement system in the modified relay changes from 2 to 4.Conclusion:A relaying algorithm is proposed for the protection of transmission line compensated with Static Var Compensator (SVC) and criticality ranking of different failure modes of a digital relay is carried out. The proposed scheme has significant advantages over more traditional relaying algorithms. It is suitable for high resistance faults and is not affected by the inception angle nor by the location of fault.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tu-bing Yin ◽  
Kang Peng ◽  
Liang Wang ◽  
Pin Wang ◽  
Xu-yan Yin ◽  
...  

The dynamic failure characteristics of coal rock exposed to high temperatures were studied by using a split Hopkinson pressure bar (SHPB) system. The relationship between energy and time history under different temperature conditions was obtained. The energy evolution and the failure modes of specimens were analyzed. Results are as follows: during the test, more than 60% of the incident energy was not involved in the breaking of the sample, while it was reflected back. With the increase of temperature, the reflected energy increased continuously; transmitted and absorbed energy showed an opposite variation. At the temperature of 25 to 100°C, the absorbed energy was less than that transmitted, while this phenomenon was opposite after 100°C. The values of specific energy absorption (SEA) were distributed at 0.04 to 0.1 J·cm−3, and its evolution with temperature could be divided into four different stages. Under different temperature conditions, the failure modes and the broken blocks of the samples were obviously different, combining with the variation of microstructure characteristics of coal at high temperatures; the physical mechanism of damage and failure patterns of coal rock are explained from the viewpoint of energy.


Sign in / Sign up

Export Citation Format

Share Document