Application of Numerical and Experimental Techniques for the Aero-Acoustic Characterisation of a Car Rear-View Mirror

2005 ◽  
Vol 4 (1-2) ◽  
pp. 185-212 ◽  
Author(s):  
Christoph Reichl ◽  
Christian Krenn ◽  
Martin Mann ◽  
Hermann Lang

Numerical as well as experimental approaches are used to capture aero-acoustic characteristics of a car rear-view mirror. The numerical study splits up into several parts. Using an actual production mirror, particular emphasis must be put on the geometry preparation and mesh generation. Initially, a CFD simulation of the entire car aerodynamics is performed to extract the proper flow boundary conditions for the aero-acoustic simulation of a smaller section surrounding the mirror. Pressure fluctuations on the surfaces extracted during an LES generate the data base required for the aeroacoustic post-processing. The acoustic pressure at several monitoring points is then calculated using Lighthill's Acoustic Analogy. To include refraction effects of the nearby surfaces a direct BEM approach is also employed. Utilizing the PIV method, local areas of increased turbulence are identified experimentally. Microphone measurements with and without the exterior mirror are performed.

Author(s):  
Jian-Cheng Cai ◽  
Jie Pan ◽  
Andrew Guzzomi

In this paper, the 3-D unsteady turbulent flow inside a centrifugal pump is investigated by computational fluid dynamics (CFD) in ANSYS CFX, using Detached Eddy Simulation (DES) as the turbulence approach. The pump has a single end-suction and a single volute discharge. The impeller is semi-open (unshrouded with baseplate) and has five backswept blades and pump-out back blades. The CFD model of the pump consists of the inlet, the impeller, and the volute. A sliding mesh technique has been applied to the interfaces in order to allow unsteady interactions between the rotating impeller and the stationary parts. These unsteady interactions generate pressure fluctuations over the volute casing and blade surfaces that are hydroacoustic dipoles according to Lighthill’s acoustic analogy theory. The pressure fluctuation spectra at the volute tongue show that pressure fluctuations are generated mainly by the discrete components related to the impeller rotation at low frequencies, especially the blade-passing frequency (BPF) component. This component is approximately 1% of the reference dynamic pressure 0.5ρν22 where ν2 is the circumferential velocity at the impeller outlet. The discrete components with frequency larger than 4 times BPF are no longer obvious in the spectra. Compared to the experimental results, the CFD simulation predicts much lower amplitudes for the broad band pressure fluctuations. This is reasonable, because DES combines a classical Reynolds averaged Navier Stokes (RANS) simulation with elements of Large Eddy Simulation (LES), and both RANS and LES use average methods which filter out the high frequency fluctuations. Nevertheless, CFD is capable of accurately predict the BPF component. The pressure fluctuations on the casing and blade surfaces are extracted and modelled as the stationary and rotary dipoles, respectively, according to the Ffowcs Williams and Hawkings (FW-H) equation of the acoustic analogy theory. After Fast Fourier Transform, the spectra of the pressure fluctuations are obtained, and are used to predict the tonal hydrodynamic sound radiation at BPF and its low order harmonics. The sound radiation of casing surface dipoles is calculated by extracting the tonal components, and performing a surface integration with the fundamental solution to Helmholtz equation as the kernel. A frequency domain formulation of the FW-H equation with the moving surface dipole is employed to predict the tonal blade noise. The results from these acoustical simulations show that the sound power generated by the casing surface dipole is three orders of magnitude higher than that of the blade surface dipole, and the main hydroacoustic sources are located at the volute tongue.


2021 ◽  
Vol 1809 (1) ◽  
pp. 012025
Author(s):  
M O Kuchinskiy ◽  
T P Lyubimova ◽  
K A Rybkin ◽  
O O Fattalov ◽  
L S Klimenko

Author(s):  
Jeong Hyo Park ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Jae Sung Jeong ◽  
Byung Keun Oh ◽  
...  

The aim of this study was to evaluate the load characteristics of steel and concrete tubular members under jet fire, with the motivation to investigate the jet fire load characteristics in FPSO topsides. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) [1]. To obtain reliable load values, jet fire tests were carried out in parallel with a numerical study. Computational fluid dynamics (CFD) simulation was used to set up an adiabatic wall boundary condition for the jet fire to model the heat transfer mechanism. A concrete tubular member was tested under the assumption that there is no conduction effect from jet fire. A steel tubular member was tested and considered to transfer heat through conduction, convection, and radiation. The temperature distribution, or heat load, was analyzed at specific locations on each type of member. ANSYS CFX [2] and Kameleon FireEx [3] codes were used to obtain similar fire action in the numerical and experimental methods. The results of this study will provide a useful database to determine design values related to jet fire.


Author(s):  
Kin’ya Takahashi ◽  
Masataka Miyamoto ◽  
Yasunori Ito ◽  
Toshiya Takami ◽  
Taizo Kobayashi ◽  
...  

The acoustic mechanisms of 2D and 3D edge tones and a 2D small air-reed instrument have been studied numerically with compressible Large Eddy Simulation (LES). Sound frequencies of the 2D and 3D edge tones obtained numerically change with the jet velocity well following Brown’s semi-empirical equation, while that of the 2D air-reed instrument behaves in a different manner and obeys the semi-empirical theory, so called Cremer-Ising-Coltman theory. We have also calculated aerodynamic sound sources for the 2D edge tone and the 2D air-reed instrument relying on Ligthhill’s acoustic analogy and have discussed similarities and differences between them. The sound source of the air-reed instrument is more localized around the open mouth compared with that of the edge tone due to the effect of the strong sound field excited in the resonator.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012040
Author(s):  
A V Sentyabov ◽  
D V Platonov ◽  
A V Minakov ◽  
A S Lobasov

Abstract The paper presents a study of the instability of the precessing vortex core in the model of the draft tube of a hydraulic turbine. The study was carried out using numerical modeling using various approaches: URANS, RSM, LES. The best agreement with the experimental data was shown by the RSM and LES methods with the modelling of the runner rotation by the sliding mesh method. In the regime under consideration, the precessing vortex rope is subject to instability, which leads to reconnection of its turns and the formation of an isolated vortex ring. Reconnection of the vortex core leads to aperiodic and intense pressure fluctuations recorded on the diffuser wall.


1999 ◽  
Author(s):  
Yoko Takakura ◽  
Takayoshi Suzuki ◽  
Fumio Higashino ◽  
Masahiro Yoshida

Sign in / Sign up

Export Citation Format

Share Document