scholarly journals Small interfering RNA-mediated downregulation of beta-catenin inhibits invasion and migration of colon cancer cells in vitro

2012 ◽  
Vol 18 (7) ◽  
pp. BR273-BR280 ◽  
Author(s):  
Jianjun Han ◽  
Binbin Gao ◽  
Xing Jin ◽  
Zhongfa Xu ◽  
Zengjun Li ◽  
...  
Author(s):  
Mattias Lepsenyi ◽  
Nader Algethami ◽  
Amr A. Al-Haidari ◽  
Anwar Algaber ◽  
Ingvar Syk ◽  
...  

AbstractPeritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yerin Kim ◽  
Na Youn Lee ◽  
Yoo Sun Kim ◽  
Yuri Kim

Abstract Objectives Tumor-associated macrophages (TAMs) and tumor-associated fibroblasts (TAFs) are consisted of tumor microenvironment (TME), which are involved in cancer progression and metastasis. Interactions within TME induce M2 macrophage phenotype, TAMs, and activate TAFs. β-carotene (BC) is a well-known antioxidant and showed protective effects on several diseases, including cancers. The object of this study is to investigate the anti-colorectal cancer (CRC) effects of BC by controlling macrophage polarization and fibroblast activation. Methods TAMs were induced by treating with phorbol-12-myristate-13-acetate (PMA) and interleukin-4 (IL-4) in U937 cells and TAFs were induced by treating with transforming growth factor-β1 (TGF-β1) in CCD-18Co cells. To understand the effect of TME on cancer cells, HCT116 colon cancer cells were co-cultured with TAM or TAF conditioned media. The effects of BC on the expressions of cancer stem cells (CSCs) markers, epithelial-mesenchymal transition (EMT) markers along with invasion and migration were investigated. To confirm these results, the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colitis-associated CRC mice model was used. Results BC decreased M2 macrophage polarization with activating IL-6/STAT3 signaling pathways and suppressed the expressions of fibroblast activation markers and EMT markers. In addition, BC inhibited the expressions of TME-induced CSCs markers and EMT and suppressed cell invasion and migration. Furthermore, BC supplementation suppressed tumorigenesis and the expressions of M2 macrophage-associated markers, including CD206, Arg1, and Ym-1 as well as CSCs markers in vivo. Conclusions BC suppressed CRC by regulating TAMs and TAFs in vitro and in vivo, which indicated the potential therapeutic effects of BC on inflammatory diseases. Funding Sources This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and Brain Korea 21 Plus.


2016 ◽  
Vol 147 ◽  
pp. 323-332 ◽  
Author(s):  
Walter E. Rudzinski ◽  
Adriana Palacios ◽  
Abuzar Ahmed ◽  
Michelle A. Lane ◽  
Tejraj M. Aminabhavi

2021 ◽  
Vol 11 ◽  
Author(s):  
Yibin Zhao ◽  
Hongyi Zhou ◽  
Jie Shen ◽  
Shaohui Yang ◽  
Ke Deng ◽  
...  

BackgroundDysregulated microRNAs (miRNAs) are common in human cancer and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, this study aimed to evaluate the expression and biological function of miR-1236-3p in colon cancer.MethodsThis study screened the miRNA in normal and colon cancer tissues through array analysis. In addition, quantitative Reverse Transcription–Polymerase Chain Reaction (qRT-PCR) analysis was performed to validate the expression of miR-1236-3p in normal and tumor tissues from colon cancer patients and cancer cell lines. Online predicting algorithms and luciferase reporter assays were also employed to confirm Doublecortin Like Kinase 3 (DCLK3) was the target for miR-1236-3p. Moreover, the impact of miR-1236-3p on the progression of colon cancer was evaluated in vitro and in vivo. Western blotting and qRT-PCR were also performed to investigate the interactions between miR-1236-3p and DCLK3.ResultsMiR-1236-3p was significantly downregulated in colon cancer tissues and its expression was associated with the TNM stage and metastasis of colon. In addition, the in vitro and in vivo experiments showed that miR-1236-3p significantly promoted cancer cell apoptosis and inhibited the proliferation, invasion, and migration of cancer cells. The results also showed that miR-1236-3p hindered Epithelial–mesenchymal Transition (EMT) by targeting DCLK3. Moreover, the expression of DCLK3 mediated the effects of miR-1236-3p on the progression of cancer.ConclusionsMiR-1236-3p functions as a tumor suppressor in colon cancer by targeting DCLK3 and is therefore a promising therapeutic target for colon cancer.


2011 ◽  
Vol 140 (5) ◽  
pp. S-402-S-403 ◽  
Author(s):  
Masanobu Takahashi ◽  
Yan Shen ◽  
Alexander Link ◽  
Francesc Balaguer ◽  
C. Richard Boland ◽  
...  

Author(s):  
Wen-jun Zhang ◽  
Ce-gui Hu ◽  
Hong-liang Luo ◽  
Zheng-ming Zhu

The pathological mechanism of colon cancer is very complicated. Therefore, exploring the molecular basis of the pathogenesis of colon cancer and finding a new therapeutic target has become an urgent problem to be solved in the treatment of colon cancer. ATP plays an important role in regulating the progression of tumor cells. P2 × 7 belongs to ATP ion channel receptor, which is involved in the progression of tumors. In this study, we explored the effect and molecular mechanism of ATP-mediated P2 × 7 receptor on the migration and metastasis of colon cancer cells. The results showed that ATP and BzATP significantly increased the inward current and intracellular calcium concentration of LOVO and SW480 cells, while the use of antagonists (A438079 and AZD9056) could reverse the above phenomenon. We found that ATP promoted the migration and invasion of LOVO and SW480 cells and is dose-dependent on ATP concentration (100–300 μM). Similarly, BzATP (10, 50, and 100 μM) also significantly promoted the migration and invasion of colon cancer cells in a concentration-dependent manner. While P2 × 7 receptor antagonists [A438079 (10 μM), AZD9056 (10 μM)] or P2 × 7 siRNA could significantly inhibit ATP-induced colon cancer cell migration and invasion. Moreover, in vivo experiments showed that ATP-induced activation of P2 × 7 receptor promoted the growth of tumors. Furthermore, P2 × 7 receptor activation down-regulated E-cadherin protein expression and up-regulated MMP-2 mRNA and concentration levels. Knocking down the expression of P2 × 7 receptor could significantly inhibit the increase in the expression of N-cadherin, Vimentin, Zeb1, and Snail induced by ATP. In addition, ATP time-dependently induced the activation of STAT3 via the P2 × 7 receptor, and the STAT3 pathway was required for the ATP-mediated invasion and migration. Our conclusion is that ATP-induced P2 × 7 receptor activation promotes the migration and invasion of colon cancer cells, possibly via the activation of STAT3 pathway. Therefore, the P2 × 7 receptor may be a potential target for the treatment of colon cancer.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qi-Hong Jiang ◽  
Ai-Xiang Wang ◽  
Yan Chen

As a member of the ezrin-radixin-moesin (ERM) family, radixin is overexpressed in many tumor tissues. However, little is known about its role in the progression of colon cancer. So we here aimed to determine the function of radixin in colon cancer cell invasion. Interestingly, we found that the expression of radixin was significantly elevated in colon cancer cells. Knockdown of radixin suppressed the invasion and migration of colon cancer cells. Further, knockdown of radixin inhibited the activation of Rac1 and ERK1/2, and decreased the expression and secretion of MMP-7. In addition, Rac1-ERK signaling pathway was required for the radixin-promoted invasion and MMP-7 production. Together, our findings suggest that radixin enhances the invasion and migration of colon cancer cells. Activation of Rac1-ERK pathway and consequent upregulation of MMP-7 production may contribute to the function of radixin in the regulation of colon cancer cell invasion. Thus, radixin may act as a novel target for the diagnosis and treatment of colon cancer.


Sign in / Sign up

Export Citation Format

Share Document