scholarly journals Radixin Enhances Colon Cancer Cell Invasion by Increasing MMP-7 Production via Rac1-ERK Pathway

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qi-Hong Jiang ◽  
Ai-Xiang Wang ◽  
Yan Chen

As a member of the ezrin-radixin-moesin (ERM) family, radixin is overexpressed in many tumor tissues. However, little is known about its role in the progression of colon cancer. So we here aimed to determine the function of radixin in colon cancer cell invasion. Interestingly, we found that the expression of radixin was significantly elevated in colon cancer cells. Knockdown of radixin suppressed the invasion and migration of colon cancer cells. Further, knockdown of radixin inhibited the activation of Rac1 and ERK1/2, and decreased the expression and secretion of MMP-7. In addition, Rac1-ERK signaling pathway was required for the radixin-promoted invasion and MMP-7 production. Together, our findings suggest that radixin enhances the invasion and migration of colon cancer cells. Activation of Rac1-ERK pathway and consequent upregulation of MMP-7 production may contribute to the function of radixin in the regulation of colon cancer cell invasion. Thus, radixin may act as a novel target for the diagnosis and treatment of colon cancer.

Author(s):  
Mattias Lepsenyi ◽  
Nader Algethami ◽  
Amr A. Al-Haidari ◽  
Anwar Algaber ◽  
Ingvar Syk ◽  
...  

AbstractPeritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.


2017 ◽  
Vol 474 (5) ◽  
pp. 647-665 ◽  
Author(s):  
Anan H. Said ◽  
Shien Hu ◽  
Ameer Abutaleb ◽  
Tonya Watkins ◽  
Kunrong Cheng ◽  
...  

M3 muscarinic receptor (M3R) expression is increased in colon cancer; M3R activation stimulates colon cancer cell invasion via cross-talk with epidermal growth factor receptors (EGFR), post-EGFR activation of mitogen-activated protein kinase (MAPK) extracellular signal-related kinase 1/2 (ERK1/2), and induction of matrix metalloproteinase-1 (MMP1) expression. MMP1 expression is strongly associated with tumor metastasis and adverse outcomes. Here, we asked whether other MAPKs regulate M3R agonist-induced MMP1 expression. In addition to activating ERK1/2, we found that treating colon cancer cells with acetylcholine (ACh) stimulated robust time- and dose-dependent phosphorylation of p38 MAPK. Unlike ERK1/2 activation, ACh-induced p38 phosphorylation was EGFR-independent and blocked by inhibiting protein kinase C-α (PKC-α). Inhibiting activation of PKC-α, EGFR, ERK1/2, or p38-α/β alone attenuated, but did not abolish ACh-induced MMP1 expression, a finding that predicted potentiating interactions between these pathways. Indeed, ACh-induced MMP1 expression was abolished by incubating cells with either an EGFR or MEK/ERK1/2 inhibitor combined with a p38-α/β inhibitor. Activating PKC-α and EGFR directly with the combination of phorbol 12-myristate 13-acetate (PMA) and EGF potentiated MMP1 gene and protein expression, and cell invasion. PMA- and ACh-induced MMP1 expression were strongly diminished by inhibiting Src and abolished by concurrently inhibiting both p38-α/β and Src, indicating that Src mediates the cross-talk between PKC-α and EGFR signaling. Using siRNA knockdown, we identified p38-α as the relevant p38 isoform. Collectively, these studies uncover novel functional interactions between post-muscarinic receptor signaling pathways that augment MMP1 expression and drive colon cancer cell invasion; targeting these potentiating interactions has therapeutic potential.


2017 ◽  
Vol 18 (8) ◽  
pp. 964-982 ◽  
Author(s):  
Jolien Bridelance ◽  
Zuzanna Drebert ◽  
Olivier De Wever ◽  
Marc Bracke ◽  
Ilse M. Beck

2020 ◽  
Vol 16 ◽  
Author(s):  
Vibhavana Singh ◽  
Rakesh Reddy ◽  
Antarip Sinha ◽  
Venkatesh Marturi ◽  
Shravani Sripathi Panditharadyula ◽  
...  

: Diabetes and breast cancer are pathophysiologically similar and clinically established diseases that co-exist with a wider complex similar molecular signalling and having similar set of risk factors. Insulin plays a pivotal role for invasion and migration of breast cancer cells. Several ethnopharmacological evidences light the concomitant anti-diabetic and anti-cancer activity of medicinal plant and phytochemicals against breast tumor of patients with diabetes. This present article reviewed the findings on medicinal plants and phytochemicals with concomitant anti-diabetic and anti-cancer effects reported in scientific literature to facilitate the development of dual-acting therapies against diabetes and breast cancer. The schematic tabular form of published literatures on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals against diabetes and breast tumor that could be explored further for the discovery of therapies for controlling of breast cancer cell invasion and migration in patient with diabetes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ding Zhu ◽  
Xueshuang Huang ◽  
Fang Liang ◽  
Lijing Zhao

This article has been retracted. Please see the Retraction Notice for more detail: 10.1186/s13048-020-00747-z


Sign in / Sign up

Export Citation Format

Share Document