Study on Freezing Resistance of Alginate Gel

2021 ◽  
Vol 10 (02) ◽  
pp. 87-92
Author(s):  
晓亮 邢
1997 ◽  
Vol 12 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Yoshifumi Murata ◽  
Norie Katayana ◽  
Takashi Kajita ◽  
Etsuko Miyamoto ◽  
Susumu Kawashima

1987 ◽  
Vol 19 (1-2) ◽  
pp. 175-182 ◽  
Author(s):  
Z. Lewandowski ◽  
R. Bakke ◽  
W. G. Characklis

Immobilization of nitrifiers and autotrophic denitrifiers (Thiobacillus denitrificans) within calcium alginate gel was demonstrated. Calcium carbonate reagent was immobilized along with bacteria as the stabilizing agent. Protons released as a result of microbial respiration reacted with calcium carbonate producing calcium ions which internally stabilized the calcium alginate gel. The microbially active gel beads were mechanically stable and active for three months in a continuous flow system without addition of calcium.


2002 ◽  
Vol 39 (6) ◽  
pp. 655-660 ◽  
Author(s):  
Hitoshi MIMURA ◽  
Hiroshi OHTA ◽  
Kenichi AKIBA ◽  
Yoshio ONODERA
Keyword(s):  

2021 ◽  
Author(s):  
Nadia S Arias ◽  
Fabián G Scholz ◽  
Guillermo Goldstein ◽  
Sandra J Bucci

Abstract Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown out-door in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated to lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effects persists during the winter after the water deficit even when treatment was removed, because of natural rainfalls.


2021 ◽  
Author(s):  
Gabriela Ionita ◽  
Elena Irina Popescu ◽  
Ludmila Aricov ◽  
Sorin Mocanu ◽  
Iulia Matei ◽  
...  

Alginate gels have been explored in relevant domains for daily life such as pharmaceutics and environmental. The structural features of alginate allow functionalization which, in extension, can modify the gel...


Author(s):  
Sirorat Wacharanad ◽  
Puncharee Thatree ◽  
Punchaya Yiemwattana ◽  
Penpitcha Paoprajak ◽  
Pimchanok Ngamsangiam ◽  
...  

Abstract Objectives This article aimed to study the effects of the​ roselle-capped​ silver​ nanochip​ ​(SNP-Ro​ chip)​ against Aggregatibacter actinomycetemcomitans, and the toxicity of this film on fibroblast cells to develop this SNP-Ro chip into a local chemical for the treatment of periodontitis in the future. Materials and Methods Using a microwave-assisted synthesis method, silver​ nanoparticles (SNPs) were prepared from a silver nitrate solution and roselle extract as a reducing and capping agent. Then, SNP-Ro chips were fabricated by mixing a solution of SNP-Ro with alginate gel. The antimicrobial effect of the synthesized SNP-Ro chips was performed by the disc diffusion technique and time kill assay. The cytotoxic effect was also determined by the MTS assay. Statistical Analysis One-way analysis of variance (ANOVA) and Scheffe’s method were used to analyze the data for this experiment. Results All three ratios of the SNP-Ro chip produced inhibition zones ranging between 18.75 ± 2.08 and 19.03 ± 2.25 mm. In studying the killing time, the three groups of the SNP-Ro chips completely eradicated A. actinomycetemcomitans within 180 minutes. The percentage of the viable SNP-Ro chip-treated human gingival fibroblasts (HGFs) were significantly increased when compared with the alginate chip-treated cells (p < 0.05). Conclusion This study developed a new method for the deposition of SNPs in alginate gel to make a thin small chip for the sustained release of the SNPs in a periodontal lesion. Therefore, the SNP-Ro chip has the potential to be developed as an adjunctive locally delivered antimicrobial agent in periodontal therapy.


2001 ◽  
Vol 36 (7) ◽  
pp. 601-606 ◽  
Author(s):  
A Blandino ◽  
M Macı́as ◽  
D Cantero

2008 ◽  
Vol 28 (7) ◽  
pp. 1149-1158 ◽  
Author(s):  
Y.C. Fu ◽  
M.L. Ho ◽  
S.C. Wu ◽  
H.S. Hsieh ◽  
C.K. Wang

Sign in / Sign up

Export Citation Format

Share Document