The Application of 3D Full-Field Stress-Strain Test System in Mining Subsidence Simulation Experiment

2020 ◽  
Vol 08 (03) ◽  
pp. 304-310
Author(s):  
卫军 王
2020 ◽  
Vol 1678 ◽  
pp. 012093
Author(s):  
Shijia Wang ◽  
Lei Liu ◽  
Jun Feng ◽  
Jiandong Yuan ◽  
Xiao Zhang

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1252 ◽  
Author(s):  
Martin Diehl ◽  
Jörn Niehuesbernd ◽  
Enrico Bruder

The influence of grain shape and crystallographic orientation on the global and local elastic and plastic behaviour of strongly textured materials is investigated with the help of full-field simulations based on texture data from electron backscatter diffraction (EBSD) measurements. To this end, eight different microstructures are generated from experimental data of a high-strength low-alloy (HSLA) steel processed by linear flow splitting. It is shown that the most significant factor on the global elastic stress–strain response (i.e., Young’s modulus) is the crystallographic texture. Therefore, simple texture-based models and an analytic expression based on the geometric mean to determine the orientation dependent Young’s modulus are able to give accurate predictions. In contrast, with regards to the plastic anisotropy (i.e., yield stress), simple analytic approaches based on the calculation of the Taylor factor, yield different results than full-field microstructure simulations. Moreover, in the case of full-field models, the selected microstructure representation influences the outcome of the simulations. In addition, the full-field simulations, allow to investigate the micro-mechanical fields, which are not readily available from the analytic expressions. As the stress–strain partitioning visible from these fields is the underlying reason for the observed macroscopic behaviour, studying them makes it possible to evaluate the microstructure representations with respect to their capabilities of reproducing experimental results.


2012 ◽  
Vol 19 (5) ◽  
pp. 765-785 ◽  
Author(s):  
Peter Avitabile ◽  
Pawan Pingle

Dynamic response is an important consideration for design of structures due to operating or occasional loadings. The resulting dynamic stress strain is also of concern for fatigue and structural health monitoring. Typically, the actual loading and structural condition (boundary conditions, environmental condition, geometry, mechanical properties, etc.) are not necessarily known. Much effort is expended in attempting to identify the loads and appropriate model for prediction of these types of events. At best, the forces and actual boundary conditions are approximate and have an effect on the overall predicted response and resulting stress-strain that is identified for subsequent evaluation.Experimental data can only be obtained from limited sets of points, such as those typically collected with accelerometers. These are normally used in the evaluation the state of a structure in service condition. More recently, Digital Image Correlation (DIC) and Dynamic Photogrammetry (DP) have become very important techniques to measure the surface response. These are non-contact and full-field techniques, which allow that much more simultaneous data to be measure. The sets of limited surface data that are collected can be used in conjunction with an expansion algorithm to obtain full field information. The finite element model mass and stiffness matrices are used to obtain the normal constitutive relations as well as the modal characteristics. This information is used to develop the expansion algorithm and for the stress recovery during the back substitution process typically employed.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yanbao Liu ◽  
Haitao Sun ◽  
Bo Wang ◽  
Linchao Dai ◽  
Jie Cao

Gas outburst is an important issue in deep coal mining. At present, the gas-rock coupling change mechanism and intensity prediction of gas outburst are not clear. The research of gas outburst simulation experiment is particularly important. The State Key Laboratory of Gas Disaster Monitoring and Emergency Technology of China independently developed a large-scale coal and gas outburst physical simulation test system. However, the influence of the design parameters of the testing machine on the stability and accuracy of the simulation experiment is unclear. The article analyzes the energy conversion in the process of gas outburst through experimental simulation phenomena and results. The experimental simulation results show that the energy released by the CO2 gas in similar materials is the most important energy source. The cracks of similar materials increase the nominal volume of similar materials, and the deformation energy stored in similar materials slightly increases. The experimental simulation results are consistent with the actual situation on site. Combined with CAE simulation analysis, the displacement and pressure of the indenter of the experimental machine remained basically unchanged during the experiment, and the system did not produce resonance. Comprehensive analysis shows that the design of the test machine meets the simulation requirements.


Author(s):  
Michael Choi ◽  
Andrew Kilner ◽  
Hayden Marcollo ◽  
Tim Withall ◽  
Chris Carra ◽  
...  

To avoid making billion dollar mistakes, operators with discoveries in deepwater (∼3,000m) Gulf of Mexico (GoM) need dependable well performance, reservoir response and fluid data to guide full-field development decisions. Recognizing this need, the DeepStar consortium developed a conceptual design for an Early Production System (EPS) that will serve as a mobile well test system that is safe, environmentally friendly and cost-effective. The EPS is a dynamically positioned (DP) Floating, Production, Storage and Offloading (FPSO) vessel with a bundled top tensioned riser having quick emergency disconnect capability. Both oil and gas are processed onboard and exported by shuttle tankers to local markets. Oil is stored and offloaded using standard FPSO techniques, while the gas is exported as Compressed Natural Gas (CNG). This paper summarizes the technologies, regulatory acceptance, and business model that will make the DeepStar EPS a reality. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document