Matching of Cooling Fans Based on Dimensionless Parameters

2021 ◽  
Vol 10 (03) ◽  
pp. 307-314
Author(s):  
青青 路
2020 ◽  
Vol 140 (9) ◽  
pp. 625-632
Author(s):  
Yoshiaki Taguchi ◽  
Satoshi Kadowaki ◽  
Gaku Yoshikawa ◽  
Kenji Hatakeda ◽  
Takashi Kaneko

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Ickjin Son ◽  
Grace Firsta Lukman ◽  
Mazahir Hussain Shah ◽  
Kwang-Il Jeong ◽  
Jin-Woo Ahn

Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.


Author(s):  
J. F. Cass ◽  
S. J. Hogan

AbstractThe widely cited Haken–Kelso–Bunz (HKB) model of motor coordination is used in an enormous range of applications. In this paper, we show analytically that the weakly damped, weakly coupled HKB model of two oscillators depends on only two dimensionless parameters; the ratio of the linear damping coefficient and the linear coupling coefficient and the ratio of the combined nonlinear damping coefficients and the combined nonlinear coupling coefficients. We illustrate our results with a mechanical analogue. We use our analytic results to predict behaviours in arbitrary parameter regimes and show how this led us to explain and extend recent numerical continuation results of the full HKB model. The key finding is that the HKB model contains a significant amount of behaviour in biologically relevant parameter regimes not yet observed in experiments or numerical simulations. This observation has implications for the development of virtual partner interaction and the human dynamic clamp, and potentially for the HKB model itself.


2003 ◽  
Vol 129 (10) ◽  
pp. 777-782 ◽  
Author(s):  
Victor M. Ponce ◽  
Ahmad Taher-shamsi ◽  
Ampar V. Shetty

Author(s):  
Zhimin Xi ◽  
Rong Jing ◽  
Pingfeng Wang ◽  
Chao Hu

This paper develops a Copula-based sampling method for data-driven prognostics and health management (PHM). The principal idea is to first build statistical relationship between failure time and the time realizations at specified degradation levels on the basis of off-line training data sets, then identify possible failure times for on-line testing units based on the constructed statistical model and available on-line testing data. Specifically, three technical components are proposed to implement the methodology. First of all, a generic health index system is proposed to represent the health degradation of engineering systems. Next, a Copula-based modeling is proposed to build statistical relationship between failure time and the time realizations at specified degradation levels. Finally, a sampling approach is proposed to estimate the failure time and remaining useful life (RUL) of on-line testing units. Two case studies, including a bearing system in electric cooling fans and a 2008 IEEE PHM challenge problem, are employed to demonstrate the effectiveness of the proposed methodology.


2013 ◽  
Vol 470 ◽  
pp. 392-395
Author(s):  
Tzu Chuan Chou ◽  
Sheng Hsiung Wu ◽  
Ming Hung Shu

Applications of DC cooling fans in auto electronics cover a wide range of areas. Since they all need to meet the requirement of the clients in providing customized products, many product combinations have been developed. In the past, when DC cooling fans manufacturers have not implemented the requirements of TS16949 and the core tools, their developmental process could only meet the spirit of process-orientation suggested by ISO9001. There was an obvious deficiency in terms of the quality management tools during the development and manufacturing processes, as well as the development information that should be produced; therefore, they were unable to meet the requirements of TS16949. This study constructs a new product development (NPD) procedure through the application of the five core tools that meets the requirements of TS16949, and satisfies the characteristics of the DC cooling fans industry. With this process, the Taiwanese DC cooling fans industry can effectively control the entire production process, from sales and marketing, R&D, manufacturing, to customer services. Moreover, the manufacturers could not only elevate their ability to self-manage, but also meet the requirements and gain market shares in the international automobile supply chain.


Sign in / Sign up

Export Citation Format

Share Document