GDGA-BP Model and Its Application in Control of Dry Quenching Loss

2021 ◽  
Vol 10 (03) ◽  
pp. 396-405
Author(s):  
瑞 汤
Keyword(s):  
Author(s):  
Xinzhe Yin ◽  
Jinghua Li

Many experts and scholars at home and abroad have studied this topic in depth, laying a solid foundation for the research of financial market prediction. At present, the mainstream prediction method is to use neural network and autoregressive conditional heteroscedasticity to build models, which is a more scientific way, and also verified the feasibility of the way in many studies. In order to improve the accuracy of financial market trend prediction, this paper studies in detail the neural network system represented by BP and the autoregressive conditional heterogeneous variance model represented by GARCH. Analyze its structure and algorithm, combine the advantages of both, create a GARCH-BP model, and transform its combination structure and optimize the algorithm according to the uniqueness of the financial market, so as to meet the market as much as possible Characteristics. The novelty of this paper is the construction of the autoregressive conditional heteroscedasticity model, which lays the foundation for the prediction of financial market trends through the construction of the model. However, there are some shortcomings in this article. The overall overview of the financial market is not very clear, and the prediction of the BP network is not so comprehensive. Finally, through the actual data statistics of market transactions, the effectiveness of the GARCH-BP model was tested, analyzed and researched. The final results show that model has a good effect on the prediction and trend analysis of market, and its accuracy and availability greatly improved compared with the previous conventional approach, which is worth further study and extensive research It is believed that the financial market prediction model will become one of the mainstream tools in the industry after its later improvement.


2008 ◽  
Vol 41-42 ◽  
pp. 135-140 ◽  
Author(s):  
Qiang Li ◽  
Xu Dong Sun ◽  
Jing Yuan Yu ◽  
Zhi Gang Liu ◽  
Kai Duan

Artificial neural network (ANN) is an intriguing data processing technique. Over the last decade, it was applied widely in the chemistry field, but there were few applications in the porous NiTi shape memory alloy (SMA). In this paper, 32 sets of samples from thermal explosion experiments were used to build a three-layer BP (back propagation) neural network model. According to the registered BP model, the effect of process parameters including heating rate ( ), green density ( ) and particle size of Ti ( d ) on compressive properties of reacted products including ultimate compressive strength ( v D σ ) and ultimate compressive strain (ε ) was analyzed. The predicted results agree with the actual data within reasonable experimental error, which shows that the BP model is a practically very useful tool in the properties analysis and process parameters design of the porous NiTi SMA prepared by thermal explosion method.


2014 ◽  
Vol 57 (12) ◽  
pp. 471-476 ◽  
Author(s):  
M. B. Shkoller ◽  
S. A. Kazimirov ◽  
M. V. Temlyantsev ◽  
A. E. Basegski

2015 ◽  
pp. 133-136
Author(s):  
Zheng-shi Chen ◽  
Ya-xun Lan ◽  
Jun-zheng Song
Keyword(s):  

2012 ◽  
Vol 524-527 ◽  
pp. 180-183
Author(s):  
Feng Gao

Total energy, maximum peak amplitude and RMS amplitude are sensitive to sand body, and they are non-linear relations with sand thickness. In this study, a three-layer BP neural network is employed to build the prediction model. Nine samples were analyzed by three-layer BP network. The relationships were produced by BP network between sand thickness and the three seismic attributes. The precise prediction results indicate that the three-layer BP network based modeling is a practically very useful tool in prediction sand thickness. The BP model provided better accuracy in prediction than other methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongge Cui ◽  
Chuanqu Zhu ◽  
Qingfeng Li ◽  
Qiyun Huang ◽  
Qi Luo

Deformation prediction is significant to the safety of foundation pits. Against with low accuracy and limited applicability of a single model in forecasting, a PSO-GM-BP model was established, which used the PSO optimization algorithm to optimize and improve the GM (1, 1) model and the BP network model, respectively. Combining a small amount of measured data during the excavation of a bottomless foundation pit in a Changsha subway station, the calculations based on the PSO-GM model, the PSO-BP network model, and the PSO-GM-BP model compared. The results show that both the GM (1, 1) and BP neural network models can predict accurate results. The prediction optimized by the particle swarm algorithm is more accurate and has more substantial applicability. Due to its reliable accuracy and wide application range, the PSO-GM-BP model can effectively guide the construction of foundation pits, and it also has certain reference significance for other engineering applications.


2011 ◽  
Vol 287-290 ◽  
pp. 949-952
Author(s):  
Yong Zhe Fan ◽  
Yu Chen Song ◽  
Rui Na Ma

According to the requirement of the pot scaleboard of Coke Dry Quenching, high content of aluminium heat resisting alloy was developed.Through changing the content of carbon,boron and titanium,the best compounding of the heat resisting alloy was Fe-8Al-1B-5Cr-0.3C-0.5Ti.The microstructure of this kind of alloy was observed and analyzed with optical microscope.It also had good performance of oxidation resistance,abrasion resistance and thermal fatigue resistance,it was suitable for using as pot scaleboard of CDQ.


2021 ◽  
Author(s):  
Chaojie Niu ◽  
Xiang Li ◽  
Chengshuai Liu ◽  
Shan-e-hyder Soomro ◽  
Caihong Hu

Abstract Daily reference evapotranspiration (ET0) is the most crucial link in estimating crop water demand. In this study, Levenberg-Marquardt (L-M), Genetic Algorithm-Back Propagation (GA-BP) and Partial Least Squares Regression (PLSR) models were introduced to calculate the ET0 values, Based on the Pearson Correlation analysis method, five meteorological factors were obtained, which were combined into six different input scenarios. Compared with the values that calculated by the the Penman Monteith (PM) formula. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI) were used to evaluate the simulation performance of the models. The results showed that the simulation effect of the L-M model is better than that of the GA-BP model and PLSR model in all scenarios. PLSR model has the worst performance. The SI index of L-M6 was 46.69% lower than that of GA-BP6 and 65.78% lower than that of PLSR6. When the input factors are 3, the simulation effect of the input wind speed, the maximum temperature and the minimum temperature is the best. L-M model and GA-BP model can predict the ET0 in the region with a lack of meteorological data. This study provides an important reference for high-precision prediction of ET0 under different input combinations of meteorological factors.


Sign in / Sign up

Export Citation Format

Share Document