scholarly journals HIGH RESOLUTION BIOSTRATIGRAPHY AND PALEOECOLOGY OF THE EARLY PLIOCENE SUCCESSION OF PISSOURI BASIN (CYPRUS ISLAND)

2017 ◽  
Vol 43 (2) ◽  
pp. 763
Author(s):  
M. V Triantaphyllou ◽  
A. Antonarakou ◽  
H. Drinia ◽  
M. D. Dimiza ◽  
G. Kontakiotis ◽  
...  

The Pissouri basin (Cyprus Island) corresponds to a small tectonically controlled depression elongated NNW-SSE and widening southward in the direction of the deep Mediterranean domain. In the centre of the basin, the section Pissouri South, about 100 m thick, consists of well-preserved cyclic marine sediments including laminated brownish layers alternating with grey homogeneous marls. Plankton biostratigraphy (calcareous nannofossil and planktonic foraminifera) revealed a remarkable number of biovents bracketing the Zanclean-Piacenzian boundary. In particular the Highest Occurrence (HO) of Reticulofenestra pseudoumbilicus suggests the presence of NN14/15-NN16 nannofossil biozone boundary, dated at 3.84 Ma. Additionally the defined planktonic foraminiferal MPL3-MPL4a and MPL4a-MPL4b zone boundaries point to ages between 3.81 and 3.57 Ma, in Pissouri North section. Zanclean/Piacenzian boundary (3.6 Ma) is placed at 75.8 m from the base of the section, considering Discoaster pentaradiatus top paracme (3.61 Ma) and Globorotalia crassaformis first influx (3.6 Ma) bioevents. The cyclically developed sapropelic layers around the Zanclean – Piacenzian boundary suggest a climate characterized by a period of warm temperate conditions and a highly stratified water column that occurred at times of precession minima.

2018 ◽  
Vol 40 (1) ◽  
pp. 209 ◽  
Author(s):  
M. V. Triantaphyllou ◽  
A. Antonarakou ◽  
K. Kouli ◽  
M. Dimiza ◽  
G. Kontakiotis ◽  
...  

A quantitative analysis of coccolithophores, planktonic foraminifera and pollen assemblages was carried out on core NS-14 (SE Aegean Sea), recovered in the Western Kos Basin. Eleven coccolithophore (ACE 1-11) and ten planktonic foraminifera (APFE1-10) ecozones have been recognized during the last 14 000 yrs using calcareous nannofossil and planktonic foraminifera abundances. Additionally eight pollen assemblage zones (PAZ 1-8) have been recognised. The established high resolution ecozonal scheme allows a detailed paleoecological reconstruction for the Holocene archive in the SE Aegean Sea, defining two warm and humid phases (9300-8600 yr caiBP and 7600-6400 yr caiBP) associated with the deposition of SI and a third one between 5200-4200 yr ca[BP.


1998 ◽  
Vol 17 (2) ◽  
pp. 153-172 ◽  
Author(s):  
Raffaella Bucefalo Palliani ◽  
Emanuela Mattioli

Abstract. The integrated use of calcareous nannofossil and dinoflagellate cyst events in a study of the late Pliensbachian–early Toarcian interval in central Italy has yielded a high resolution biostratigraphy. The use of both the first and last occurrences of selected taxa belonging to the two phytoplankton groups allows the dating of the sediments with a very refined detail, even when lithologies are unfavourable to the preservation of one fossil group. The evolutionary history of calcareous nannofossils and dinoflagellate cysts during the early Jurassic and its links with global events are responsible for the high potential of this integrated biostratigraphy.


2016 ◽  
Vol 9 (10) ◽  
pp. 3779-3801 ◽  
Author(s):  
Colette Kerry ◽  
Brian Powell ◽  
Moninya Roughan ◽  
Peter Oke

Abstract. As with other Western Boundary Currents globally, the East Australian Current (EAC) is highly variable making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation, we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme, which uses the model dynamics to perturb the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. This paper describes the data assimilative model configuration that achieves a significant reduction of the difference between the modelled solution and the observations to give a dynamically consistent “best estimate” of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially averaged root mean squared (rms) residuals with the observations of 7.6 cm for sea surface height (SSH) and 0.4 °C for sea surface temperature (SST) over the assimilation period. The time-mean rms residual for subsurface temperature measured by Argo floats is a maximum of 0.9 °C between water depths of 100 and 300 m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8 and 1 for all observations in the upper 500 m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8–1 across the radar footprint. A comparison with independent (non-assimilated) shipboard conductivity temperature depth (CTD) cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the rms residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to adjust the model state estimate. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation, and as forcing for a variety of downscaling studies.


GeoArabia ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Mohammad Alqudah ◽  
Mohammad Ali Hussein ◽  
Olaf G. Podlaha ◽  
Sander van den Boorn ◽  
Sadat Kolonic ◽  
...  

ABSTRACT Cretaceous and Paleogene marls, rich in total organic carbon, are widespread throughout Jordan and adjoining areas. Based on planktonic foraminifera these oil shales have been assigned a late Campanian–Paleocene age in previous studies. For the current analysis a total of 283 smear slides from five wells in central Jordan have been investigated for calcareous nannofossil biostratigraphy. Findings suggest a much more differentiated age model of the oil shales than previously proposed. The oil shales studied contain abundant calcareous nannofossil taxa of Eocene age along with varying abundances of Maastrichtian and Paleocene taxa. The encountered marker species Rhomboaster cuspis, Tribrachiatus bramlettei, Tribrachiatus orthostylus, Discoaster lodoensis, Coccolithus crassus, Discoaster sublodoensis, Nannotetrina quadrata, Reticulofenestra umbilicus and Chiasmolithus solitus, indicate an Early to Middle Eocene age, while the presence of Maastrichtian and Paleocene forms suggests major reworking. The presence of Cretaceous taxa reflects either subaerial erosive input from the hinterland or submarine reworking of Cretaceous strata within the basin. The highly variable amount of reworked material and associated deposition rates in the basin may represent changes in the tectonic setting during the Eocene. We propose that the high abundances of Cretaceous and Paleocene taxa reflect an increase in accommodation space by active graben flank movements. A dominance of Eocene taxa, on the other hand, indicates either periods of little accommodation space due to graben infill or inversion-type movements of the graben itself. In any case, the youngest Eocene and autochthonous taxa represent shallower or low topography graben phases.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Germaine Noujaim Clark ◽  
Marcelle Boudagher-Fadel

The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of the previously reported Eocene outcrops in the harbour area. They form a parasequence of thin-bedded, chalky white limestones that includes the youngest fossil fish deposits in Lebanon ( Bregmaceros filamentosus ). The deposits are dated as early Priabonian by their association with the planktonic foraminiferal assemblage of Porticulasphaera tropicalis , Globigerinatheka barri , Dentoglobigerina venezuelana , Globigerina praebulloides , Turborotalia centralis and Borelis sp. The Middle Miocene carbonates that conformably overlie the early Priabonian, parasequence include a planktonic foraminiferal assemblage of Globigerinoides trilobus , Orbulina universa and Borelis melo . Elsewhere, in the harbour area, the preserved Eocene limestones are also overlain by conformable Miocene carbonate parasequences of Langhian–Serravallian age. Younger argillaceous limestone beds of the Mio/Pliocene age occur in the eastern central part of the harbour area and enclose an assemblage of Truncorotalia crassaformis , Globorotalia inflata and Orbulina universa . The three markers of old and recently raised structural blocks in the harbour area are a Lutetian/Bartonian marine terrace in the south west corner, a lower Pliocene shoreline carbonate section in the north east side and a Holocene raised beach of marine conglomerates in the north east corner of the area. The locations of these paleo-shorelines, less than 2 km apart, indicate a progressive platform narrowing of North Beirut since the Paleogene. This study underpins the geological complexity of the region and contributes to understanding the underlying geology, which will be needed for future regional archaeological, hydrocarbon and hydrogeological exploration.


Sign in / Sign up

Export Citation Format

Share Document