scholarly journals Σπειραματικά επίπεδα και προέλευση του παράγοντα ενεργοποίησης των αιμοπεταλίων (PAF) στην πειραματική σπειραματονεφρίτιδα

1990 ◽  
Author(s):  
Αντώνιος Ζάγκλης

The renal glomerulus and its various cell types (i.e. mesangial cells, endothelial cells) have been shown to synthesize compounds with autacoid and proinflammatory effects. [97,98] The spectrum of proinflammatory compounds of glomerular origin has recently expanded to include the alkyl ether glycerophospholipids, including 1-O-alkyl-2- acetyl-sn- glycero-3- phosphorylcholine, which is structurally identical with platelet activating factor (PAF).This compound can induce platelet and neutrophil aggregation and chemokinesis, vasodilation, increased vascular permeability and stimulation of eicosanoid production. We have demonstrated that PAF can be both synthesized and degraded in isolated glomeruli and in mesangial cells, [7,99] the latter being also capable of de novo synthesis of PAF precursors. Recent observations indicate that PAF receptor antagonism ameliorates glomerular inflammation in rabbit nephrotoxic serum nephritis, as well as the glomerular inflammatory injury induced by in situ formation of immune complexes in the rat kidney with experimental passive reverse Arthus reaction. [100,101] The present study was undertaken in order to assess the levels and cellular sources of glomerular PAF in glomeruli isolated from rats with: 1) Nephrotoxic serum nephritis, an infiltrative and complement dependent model of immune injury and 2) passive Heymann nephritis a non- infiltrative but complement dependent model. The role of complement, platelets and polymorphonuclear leucocytes was assessed. The observation that mesangial cells is the main source of PAF production in the rat glomerulus, prompted the assessment of the effect of various inflammatory mediators on the acetyl-transferase activity of the mesangial cells. […]

1986 ◽  
Vol 251 (1) ◽  
pp. F1-F11 ◽  
Author(s):  
D. Schlondorff ◽  
R. Neuwirth

Platelet-activating factor (PAF) represents a group of phospholipids with the basic structure of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine. A number of different cells are capable of producing PAF in response to various stimuli. The initial step of PAF formation is activation of phospholipase A2 in a calcium-dependent manner, yielding lyso-PAF. During this step arachidonic acid is also released and can be converted to its respective cyclooxygenase and lipoxygenase products. The lyso-PAF generated is then acetylated in position 2 of the glycerol backbone by a coenzyme A (CoA)-dependent acetyltransferase. An additional pathway may exist whereby PAF is generated de novo from 1-alkyl-2-acetyl-sn-glycerol by phosphocholine transferase. PAF inactivation in cells and blood is by specific acetylhydrolases. PAF exhibits a variety of biological activities including platelet and leukocyte aggregation and activation, increased vascular permeability, respiratory distress, decreased cardiac output, and hypotension. In the kidney PAF can produce decreases in blood flow, glomerular filtration, and fluid and electrolyte excretion. Intrarenal artery injection of PAF may also result in glomerular accumulation of platelets and leukocytes and mild proteinuria. PAF increases prostaglandin formation in the isolated kidney and in cultured glomerular mesangial cells. PAF also causes contraction of mesangial cells. Upon stimulation with calcium ionophore the isolated kidney, isolated glomeruli and medullary cells, and cultured mesangial cells are capable of producing PAF. The potential role for PAF in renal physiology and pathophysiology requires further investigation that may be complicated by 1) the multiple interactions of PAF, prostaglandins, and leukotrienes and 2) the autocoid nature of PAF, which may restrict its action to its site of generation.


2002 ◽  
Vol 282 (6) ◽  
pp. F1103-F1110 ◽  
Author(s):  
Yi Bao ◽  
Michael L. Pucci ◽  
Brenda S. Chan ◽  
Run Lu ◽  
Shigekazu Ito ◽  
...  

PGT is a broadly expressed transporter of prostaglandins (PGs) and thromboxane that is energetically poised to take up prostanoids across the plasma membrane. To gain insight into the function of PGT, we generated mouse monoclonal antibody 20 against a portion of putative extracellular loop 5 of rat PGT. Immunoblots of endogenous PGT in rat kidney revealed a 65-kDa protein in a zonal pattern corresponding to PG synthesis rates (papilla ≅ medulla > cortex). Immunocytochemically, PGT in rat kidneys was expressed in glomerular endothelial and mesangial cells, arteriolar endothelial and muscularis cells, principal cells of the collecting duct, medullary interstitial cells, medullary vasa rectae endothelia, and papillary surface epithelium. Proximal tubules, which are known to take up and metabolize PGs, were negative. Immunoblotting and immunocytochemistry revealed that rat platelets also express abundant PGT. Coexpression of the PG synthesis apparatus (cyclooxygenase) and PGT by the same cell suggests that prostanoids may undergo release and reuptake.


1996 ◽  
Vol 74 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Andre Siegel ◽  
R. Roy Baker

The activities of enzymes in platelet activating factor (PAF) biosynthetic pathways were analyzed in hippocampal and cerebral cortical regions of normal and ischemic gerbil brain to assess changes in enzyme activities and potential modulators that could explain the accentuated production of PAF seen in ischemia. Global forebrain ischemia was produced by bilateral carotid artery ligation, and the effectiveness of the ligation was shown by free fatty acid release and ATP depletion. Specific activities of 1-alkyl-2-acetyl-sn-glycerol (AAG) choline phosphotransferase, 1-alkyl-sn-glycero-3-phosphate (AGP) acetyl transferase, and 1-alkyl-sn-glycero-3-phosphocholine (lyso PAF) acetyl transferase in tissue homogenates were in the ratio 4:1:0.1, respectively. Sham-operated and ischemic or ischemic–reperfused tissues showed similar activities for individual enzymes, indicating that enzyme levels or activation states did not change in ischemic or reperfused tissues. However, small metabolites (relevant to ischemia) added to the in vitro assays did modify enzyme activities. Physiological concentrations of MgATP severely inhibited AGP acetyl transferase activity, and this resulted in the ratio of AGP acyl transferase to AGP acetyl transferase activities changing from 48:1 in the presence of 2.5 mM MgATP to 6:1 in the absence of MgATP. This suggests that falling ATP levels in cerebral ischemia may promote the de novo pathway of PAF biosynthesis by releasing inhibition of AGP acetyl transferase. Lyso PAF acetyl transferase was much less active than AGP acetyl transferase and was also inhibited by MgATP. AAG choline phosphotransferase was not inhibited by MgATP but was inhibited by calcium. However the superior specific activity of the choline phosphotransferase in comparison with the AGP acetyl transferase suggested that the lowered choline phosphotransferase activity in the presence of rising intracellular calcium would not seriously compromise the synthesis of PAF by the de novo route. Both acetyl transferase enzymes were also inhibited by oleoyl CoA.Key words: gerbil, cerebral ischemia, platelet activating factor, enzymes.


2008 ◽  
Vol 294 (4) ◽  
pp. F909-F918 ◽  
Author(s):  
Juan Du ◽  
Min Ding ◽  
Sherry Sours-Brothers ◽  
Sarabeth Graham ◽  
Rong Ma

Ca+ influx across the plasma membrane is a major component of mesangial cell (MC) response to vasoconstrictors. Polycystin 2 (PC2), the protein product of the gene mutated in type 2 autosomal dominant polycystic kidney disease, has been shown to function as a nonselective cation channel in a variety of cell types. The present study was performed to test the hypothesis that PC2 and its binding partners constitute a Ca2+-permeable channel and contribute to ANG II-induced Ca2+ signaling in MCs. Western blot and immunocytochemistry showed PC2 expression in cultured human MCs. The existence of PC2 in MCs was further confirmed by immunohistochemsitry in rat kidney sections. Coimmunoprecipitation displayed a selective interaction of PC2 with canonical transient receptor potential (TRPC) proteins TRPC1 and TRPC4. Cell-attached patch-clamp experiments revealed that ANG II-induced membrane currents were enhanced by overexpression of pkd2 but significantly inhibited by knock down of pkd2, 30 μM Gd3+ (a PC2 channel blocker), and dominant-negative pkd2 mutant (pkd2-D511V). Corresponding to the increase in channel currents, ANG II stimulation increased expression of PC2 on the cell surface of MCs and interaction with TRPC1 and TRPC4. Furthermore, ANG II-induced MC contraction was significantly reduced in pkd2-knocked down MCs. These data suggest that PC2 selectively assembles with TRPC1 and TRPC4 to form channel complexes mediating ANG II-induced Ca2+ responses in MCs.


1999 ◽  
Vol 277 (5) ◽  
pp. F742-F749 ◽  
Author(s):  
R. Brooks Robey ◽  
Jianfei Ma ◽  
Anna V. P. Santos

Phorbol esters increase glucose (Glc) uptake and utilization in a variety of cell types, and, in some cells, these changes have been attributed to increased Glc phosphorylation and better functional coupling of hexokinases (HKs) to facilitative Glc transporters. Phorbol esters are potent mesangial cell mitogens, but their effects on HK-catalyzed Glc phosphorylation and metabolism are unknown. When examined in murine mesangial cells, active, but not inactive, phorbol esters increased HK activity in a time- and dose-dependent manner. Maximal induction of HK activity at 12–24 h was accompanied by parallel increases in both Glc utilization and lactate production and was blocked by the specific MEK1/2 inhibitor PD-98059 (IC50∼3 μM). This effect involved early activation of protein kinase C (PKC), MEK1/2, and ERK1/2, and the prolonged time course of subsequent HK induction was attributable, in part, to requirements for ongoing gene transcription and de novo protein synthesis. Mesangial cell HK activity thus exhibits novel regulatory behavior involving both PKC and classic MAPK pathway activation, suggesting specific mechanisms whereby PKC activation may influence Glc metabolism.


Author(s):  
Friederike Kessel ◽  
Anne Steglich ◽  
Linda Hickmann ◽  
Ricardo Lira-Martinez ◽  
Michael Gerlach ◽  
...  

Developmentally heterogeneous renin expressing cells serve as progenitors for mural, glomerular and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers, assessed proliferation, and de-novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. The RLCs expanded mainly by de-novo differentiation (neogenesis). The fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin producing cells, vascular smooth muscle cells, mesangial cells) decreased during nephrogenesis. In contrast, aquaporin 2 positive RLCs in the collecting duct system that embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. During nephrogenesis, RLCs were continuously detectable in the vascular and tubular compartments of the kidney. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Alexandros Basilios Tsoupras ◽  
Elizabeth Fragopoulou ◽  
Tzortzis Nomikos ◽  
Christos Iatrou ◽  
Smaragdi Antonopoulou ◽  
...  

Platelet activating factor (PAF), a potent inflammatory mediator, is implicated in several proinflammatory/inflammatory diseases such as glomerulonephritis, glomerulosclerosis, atherosclerosis, cancer, allergy, and diabetes. PAF can be produced by several renal cells under appropriate stimuli and it is thought to be implicated in renal diseases. The aim of this study is the characterization of DTT-insensitive cholinephosphotransferase (PAF-CPT) of human mesangial cell (HMC), the main regulatory enzyme of PAFde novobiosynthetic pathway. Microsomal fractions of mesangial cells were isolated and enzymatic activity and kinetic parameters were determined by TLC and in vitro biological test in rabbit washed platelets. The effect of bovine serum albumin (BSA), dithiothreitol (DTT), divalent cations (Mg2+and Ca2+), EDTA, and various chemicals on the activity of PAF-CPT of HMC was also studied. Moreover, preliminary in vitro tests have been performed with several anti-inflammatory factors such as drugs (simvastatin, IFNa, rupatadine, tinzaparin, and salicylic acid) and bioactive compounds of Mediterranean diet (resveratrol and lipids of olive oil, olive pomace, sea bass “Dicentrarchuslabrax,” and gilthead sea bream “Sparus aurata”). The results indicated that the above compounds can influence PAF-CPT activity of HMC.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Sign in / Sign up

Export Citation Format

Share Document