scholarly journals Recent highlights on neutrino-nucleus interactions

2020 ◽  
Vol 9 ◽  
pp. 63
Author(s):  
E. Kolbe ◽  
T. S. Kosmas

The recent developments on neutrino-nucleus interactions at low and intermediate energies are reviewed and discussed in conjunction with the recent data of atmospheric, solar, and accelerator neutrino experiments. The theoretical nuclear physics approaches used to interpret and predict phenomena for which neutrinos play a crucial role are also investigated. We emphasize on the implications of neutrino reactions and properties into the astrophysical phenomena and atmospheric neutrino problems.

2020 ◽  
Vol 16 ◽  
pp. 305-316 ◽  
Author(s):  
Clément Ghiazza ◽  
Anis Tlili

Copper catalysis and, more generally, copper chemistry are pivotal for modern organofluorine chemistry. Major advances have been made in the field of trifluoromethylselenolations of organic compounds where copper catalysis played a crucial role. Recent developments in this field are highlighted in this minireview.


Author(s):  
Sandhya Choubey

Neutrino physics has come a long way and made great strides in the past decades. We discuss the prospects of what more can be learned in this field in the forthcoming neutrino oscillation facilities. We will mostly focus on the potential of the long-baseline experiments and the atmospheric neutrino experiments. Sensitivity of these experiments to standard neutrino oscillation parameters will be presented. We will also discuss the prospects of new physics searches at these facilities.


1999 ◽  
Vol 14 (12) ◽  
pp. 1953-1974 ◽  
Author(s):  
T. SAKAI ◽  
O. INAGAKI ◽  
T. TESHIMA

We analyze the solar, terrestrial and atmospheric neutrino experiments including SuperKamiokande data using the three-flavor neutrinos framework and obtain the allowed region for parameters [Formula: see text]. In solar neutrino experiments, we obtain the large angle solution [Formula: see text] and small angle solution (3×10-6-1.2×10-5 eV 2, 0.003-0.01) for θ13=0°-20°. From the terrestrial and atmospheric neutrino experiments including the sub-GeV and multi-GeV zenith angle dependence in SuperKamiokande 535 days data, we found that the νμ-ντ mixing is large and the range of [Formula: see text] as 0.02~0.0002  eV 2. There is no significant difference between large θ12 angle solution and small one.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Takaaki Kajita

Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.


2016 ◽  
Vol 3 (3) ◽  
pp. 345-364 ◽  
Author(s):  
Haojie Lu ◽  
Ying Zhang ◽  
Pengyuan Yang

Abstract Protein N-glycosylation plays a crucial role in a considerable number of important biological processes. Research studies on glycoproteomes and glycomes have already characterized many glycoproteins and glycans associated with cell development, life cycle, and disease progression. Mass spectrometry (MS) is the most powerful tool for identifying biomolecules including glycoproteins and glycans, however, utilizing MS-based approaches to identify glycoproteomes and glycomes is challenging due to the technical difficulties associated with glycosylation analysis. In this review, we summarize the most recent developments in MS-based glycoproteomics and glycomics, including a discussion on the development of analytical methodologies and strategies used to explore the glycoproteome and glycome, as well as noteworthy biological discoveries made in glycoproteome and glycome research. This review places special emphasis on China, where scientists have made sizeable contributions to the literature, as advancements in glycoproteomics and glycomincs are occurring quite rapidly.


2020 ◽  
Vol 21 (2) ◽  
pp. 455 ◽  
Author(s):  
Anubhab Mukherjee ◽  
Vijay Sagar Madamsetty ◽  
Manash K. Paul ◽  
Sudip Mukherjee

Angiogenesis is a process of generation of de-novo blood vessels from already existing vasculature. It has a crucial role in different physiological process including wound healing, embryonic development, and tumor growth. The methods by which therapeutic drugs inhibit tumor angiogenesis are termed as anti-angiogenesis cancer therapy. Developments of angiogenic inhibiting drugs have various limitations causing a barrier for successful treatment of cancer, where angiogenesis plays an important role. In this context, investigators developed novel strategies using nanotechnological approaches that have demonstrated inherent antiangiogenic properties or used for the delivery of antiangiogenic agents in a targeted manner. In this present article, we decisively highlight the recent developments of various nanoparticles (NPs) including liposomes, lipid NPs, protein NPs, polymer NPs, inorganic NPs, viral and bio-inspired NPs for potential application in antiangiogenic cancer therapy. Additionally, the clinical perspectives, challenges of nanomedicine, and future perspectives are briefly analyzed.


Sign in / Sign up

Export Citation Format

Share Document