scholarly journals Case Report: Detection and quantification of tumor cells in peripheral blood and ascitic fluid from a metastatic esophageal cancer patient using the CellSearch® technology

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 12 ◽  
Author(s):  
Qian Tu ◽  
Marcelo De Carvalho Bittencourt ◽  
Huili Cai ◽  
Claire Bastien ◽  
Camille Lemarie-Delaunay ◽  
...  

Analysis of ascitic fluid should help to identify and characterize malignant cells in gastrointestinal cancer. However, despite a high specificity, the sensitivity of traditional ascitic fluid cytology remains insufficient, at around 60%. Since 2004 the CellSearch® technology has shown its advantages in the detection of circulating tumor cells (CTCs) in peripheral blood, which can perform an accurate diagnosis and molecular analysis at the same time. To our knowledge, no previous study has explored the potential utility of this technology for the detection and quantification of tumor cells in ascitic fluid samples. Herein we report a case of metastatic esophageal adenocarcinoma in a 70-year-old man presenting with dysphagia and a large amount of fluid in the peritoneal cavity. Analysis of a peripheral blood sample and ascites sample with the CellSearch® technology both revealed the presence of putative tumor cells that were positive for epithelial cell adhesion molecule (EpCAM) and cytokeratin (CK) expression. This study confirmed the hematogenous dissemination of esophageal cancer by the detection of circulating tumor cells in the peripheral blood, and is the first to demonstrate that tumor cells can be identified in ascitic fluid by using CellSearch® technology.

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74079 ◽  
Author(s):  
Adriana Lasa ◽  
Arnal Garcia ◽  
Carmen Alonso ◽  
Pilar Millet ◽  
Mónica Cornet ◽  
...  

2021 ◽  
Author(s):  
Jeff Darabi ◽  
Joseph Schober

Abstract Studies have shown that primary tumor sites begin shedding cancerous cells into peripheral blood at early stages of cancer, and the presence and frequency of circulating tumor cells (CTCs) in blood is directly proportional to disease progression. The challenge is that the concentration of the CTCs in peripheral blood may be extremely low. In the past few years, several microfluidic-based concepts have been investigated to isolate CTCs from whole blood. However, these devices are generally hampered by complex fabrication processes and very low volumetric throughputs, which may not be practical for rapid clinical applications. This paper presents a high-performance yet simple magnetophoretic microfluidic chip for the enrichment and on-chip analysis of rare CTCs from blood. Microscopic and flow cytometric assays developed for selection of cancer cell lines, selection of monoclonal antibodies, and optimization of bead coupling are discussed. Additionally, on-chip characterization of rare cancer cells using high resolution immunofluorescence microscopy and modeling results for prediction of CTC capture length are presented. The device has the ability to interface directly with on-chip pre and post processing modules such as mixing, incubation, and automated image analysis systems. These features will enable us to isolate rare cancer cells from whole blood and detect them on the chip with subcellular resolution.


2009 ◽  
Vol 24 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Raquel A. Nunes ◽  
Xiaochun Li ◽  
Soonmo Peter Kang ◽  
Harold Burstein ◽  
Lisa Roberts ◽  
...  

The detection of circulating tumor cells (CTCs) in peripheral blood may have important prognostic and predictive implications in breast cancer treatment. A limitation in this field has been the lack of a validated method of accurately measuring CTCs. While sensitivity has improved using RT-PCR, specificity remains a major challenge. The goal of this paper is to present a sensitive and specific methodology of detecting CTCs in women with HER-2-positive metastatic breast cancer, and to examine its role as a marker that tracks disease response during treatment with trastuzumab-containing regimens. The study included patients with HER-2-positive metastatic breast cancer enrolled on two different clinical protocols using a trastuzumab-containing regimen. Serial CTCs were measured at planned time points and clinical correlations were made. Immunomagnetic selection of circulating epithelial cells was used to address the specificity of tumor cell detection using cytokeratin 19 (CK19). In addition, the extracellular domain of the HER-2 protein (HER-2/ECD) was measured to determine if CTCs detected by CK19 accurately reflect tumor burden. The presence of CTCs at first restaging was associated with disease progression. We observed an association between CK19 and HER-2/ECD. The association of HER-2/ECD with clinical response followed a similar pattern to that seen with CK19. Finally, the absence of HER-2/ECD at best overall response and a change of HER-2/ECD from positive at baseline to negative at best overall response was associated with favorable treatment response. Our study supports the prognostic and predictive role of the detection of CTCs in treatment of HER-2-positive metastatic breast cancer patients. The association between CK19 and markers of disease burden is in line with the concept that CTCs may be a reliable measure of tumor cells in the peripheral blood of patients with metastatic breast cancer. The association of CTCs at first restaging with treatment failure indicates that CTCs may have a role as surrogate markers to monitor treatment response.


2020 ◽  
Vol 3 (9) ◽  
pp. 6521-6528
Author(s):  
Rui Li ◽  
Zhiyi Gong ◽  
Kezhen Yi ◽  
Wei Li ◽  
Yichao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document