scholarly journals Hydrogen and deuterium charging of site-specific specimen for atom probe tomography

2021 ◽  
Vol 1 ◽  
pp. 122
Author(s):  
Heena Khanchandani ◽  
Se-Ho Kim ◽  
Rama Srinivas Varanasi ◽  
TS Prithiv ◽  
Leigh T. Stephenson ◽  
...  

Hydrogen embrittlement can cause a dramatic deterioration of the mechanical properties of high-strength metallic materials. Despite decades of experimental and modelling studies, the exact underlying mechanisms behind hydrogen embrittlement remain elusive. To unlock understanding of the mechanism and thereby help mitigate the influence of hydrogen and the associated embrittlement, it is essential to examine the interactions of hydrogen with structural defects such as grain boundaries, dislocations and stacking faults. Atom probe tomography (APT) can, in principle, analyse hydrogen located specifically at such microstructural features but faces strong challenges when it comes to charging specimens with hydrogen or deuterium. Here, we describe three different workflows enabling hydrogen/deuterium charging of site-specific APT specimens: namely cathodic, plasma and gas charging. We discuss in detail the caveats of the different approaches in order to help future research efforts and facilitate further studies of hydrogen in metals. Our study demonstrates successful cathodic and gas charging, with the latter being more promising for the analysis of the high-strength steels at the core of our work.

2011 ◽  
Vol 43 (11) ◽  
pp. 3958-3971 ◽  
Author(s):  
Elena Pereloma ◽  
Hossein Beladi ◽  
Laichang Zhang ◽  
Ilana Timokhina

2021 ◽  
Author(s):  
Long-Chao Huang ◽  
Dengke Chen ◽  
De-Gang Xie ◽  
Suzhi Li ◽  
Ting Zhu ◽  
...  

Abstract Hydrogen embrittlement jeopardizes the use of high-strength steels as critical load-bearing components in energy, transportation, and infrastructure applications. However, our understanding of hydrogen embrittlement mechanism is still obstructed by the uncertain knowledge of how hydrogen affects dislocation motion, due to the lack of quantitative experimental evidence. Here, by studying the well-controlled, cyclic, bow-out movements of individual screw dislocations, the key to plastic deformation in α-iron, we find that the critical stress for initiating dislocation motion in a 2 Pa electron-beam-excited H2 atmosphere is 27~43% lower than that under vacuum conditions, proving that hydrogen lubricates screw dislocation motion. Moreover, we find that aside from vacuum degassing, dislocation motion facilitates the de-trapping of hydrogen, allowing the dislocation to regain its hydrogen-free behavior. Atomistic simulations reveal that the observed hydrogen-enhanced dislocation motion arises from the hydrogen-reduced kink nucleation barrier. These findings at individual dislocation level can help hydrogen embrittlement modelling in steels.


Metal Science ◽  
1982 ◽  
Vol 16 (12) ◽  
pp. 543-554 ◽  
Author(s):  
T. V. Venkatasubramanian ◽  
T. J. Baker

Author(s):  
Woo Jun Kwon ◽  
Jisu Ryu ◽  
Christopher H. Kang ◽  
Michael B. Schmidt ◽  
Nicholas Croy

Abstract Focused ion beam (FIB) microscopy is an essential technique for the site-specific sample preparation of atom probe tomography (APT). The site specific APT and automated APT sample preparation by FIB have allowed increased APT sample volume. In the workflow of APT sampling, it is very critical to control depth of the sample where exact region of interest (ROI) for accurate APT analysis. Very precise depth control is required at low kV cleaning process in order to remove the damaged layer by previous high kV FIB process steps. We found low kV cleaning process with 5 kV and followed by 2kV beam conditions delivers better control to reached exact ROI on Z direction. This understanding is key to make APT sample with fully automated fashion.


2018 ◽  
Vol 194 ◽  
pp. 89-99 ◽  
Author(s):  
D.K. Schreiber ◽  
D.E. Perea ◽  
J.V. Ryan ◽  
J.E. Evans ◽  
J.D. Vienna

Sign in / Sign up

Export Citation Format

Share Document