scholarly journals Synchrony between daily rhythms of malaria parasites and hosts is driven by an essential amino acid

2021 ◽  
Vol 6 ◽  
pp. 186
Author(s):  
Kimberley F. Prior ◽  
Benita Middleton ◽  
Alíz T.Y. Owolabi ◽  
Mary L. Westwood ◽  
Jacob Holland ◽  
...  

Background: Rapid asexual replication of blood stage malaria parasites is responsible for the severity of disease symptoms and fuels the production of transmission forms. Here, we demonstrate that a Plasmodium chabaudi’s schedule for asexual replication can be orchestrated by isoleucine, a metabolite provided to the parasite in a periodic manner due to the host’s rhythmic intake of food. Methods: We infect female C57BL/6 and Per1/2-null mice which have a disrupted canonical (transcription translation feedback loop, TTFL) clock with 1×105 red blood cells containing P. chabaudi (DK genotype). We perturb the timing of rhythms in asexual replication and host feeding-fasting cycles to identify nutrients with rhythms that match all combinations of host and parasite rhythms. We then test whether perturbing the availability of the best candidate nutrient in vitro changes the schedule for asexual development. Results: Our large-scale metabolomics experiment and follow up experiments reveal that only one metabolite - the amino acid isoleucine – fits criteria for a time-of-day cue used by parasites to set the schedule for replication. The response to isoleucine is a parasite strategy rather than solely the consequences of a constraint imposed by host rhythms, because unlike when parasites are deprived of other essential nutrients, they suffer no apparent costs from isoleucine withdrawal. Conclusions: Overall, our data suggest parasites can use the daily rhythmicity of blood-isoleucine concentration to synchronise asexual development with the availability of isoleucine, and potentially other resources, that arrive in the blood in a periodic manner due to the host’s daily feeding-fasting cycle. Identifying both how and why parasites keep time opens avenues for interventions; interfering with the parasite’s time-keeping mechanism may stall replication, increasing the efficacy of drugs and immune responses, and could also prevent parasites from entering dormancy to tolerate drugs.

2021 ◽  
Vol 6 ◽  
pp. 186
Author(s):  
Kimberley F. Prior ◽  
Benita Middleton ◽  
Alíz T.Y. Owolabi ◽  
Mary L. Westwood ◽  
Jacob Holland ◽  
...  

Background: Rapid asexual replication of blood stage malaria parasites is responsible for the severity of disease symptoms and fuels the production of transmission forms. Here, we demonstrate that the Plasmodium chabaudi’s schedule for asexual replication can be orchestrated by isoleucine, a metabolite provided to the parasite in periodic manner due to the host’s rhythmic intake of food. Methods: We infect female C57BL/6 and Per1/2-null TTFL clock-disrupted mice with 1×105 red blood cells containing P. chabaudi (DK genotype). We perturb the timing of rhythms in asexual replication and host feeding-fasting cycles to identify nutrients with rhythms that match all combinations of host and parasite rhythms. We then test whether perturbing the availability of the best candidate nutrient in vitro elicits changes their schedule for asexual development. Results: Our large-scale metabolomics experiment and follow up experiments reveal that only one metabolite - the amino acid isoleucine – fits criteria for a time-of-day cue used by parasites to set the schedule for replication. The response to isoleucine is a parasite strategy rather than solely the consequences of a constraint imposed by host rhythms, because unlike when parasites are deprived of other essential nutrients, they suffer no apparent costs from isoleucine withdrawal. Conclusions: Overall, our data suggest parasites can use the daily rhythmicity of blood-isoleucine concentration to synchronise asexual development with the availability of isoleucine, and potentially other resources, that arrive in the blood in a periodic manner due to the host’s daily feeding-fasting cycle. Identifying both how and why parasites keep time opens avenues for interventions; interfering with the parasite’s time-keeping mechanism may stall replication, increasing the efficacy of drugs and immune responses, and could also prevent parasites from entering dormancy to tolerate drugs.


2020 ◽  
Author(s):  
Kimberley F. Prior ◽  
Benita Middleton ◽  
Alíz T.Y. Owolabi ◽  
Mary L. Westwood ◽  
Jacob Holland ◽  
...  

SummaryThe replication of blood-stage malaria parasites is synchronised to the host’s daily feeding rhythm. We demonstrate that a metabolite provided to the parasite from the host’s food can set the schedule for Plasmodium chabaudi’s intraerythrocytic development cycle (IDC). First, a large-scale screen reveals multiple rhythmic metabolites in the blood that match the timing of the IDC, but only one - the amino acid isoleucine - that malaria parasites must scavenge from host food. Second, perturbing the timing of isoleucine provision and withdrawal demonstrate that parasites use isoleucine to schedule and synchronise their replication. Thus, periodicity in the concentration of isoleucine in the blood, driven by host-feeding rhythms, explains why timing is beneficial to the parasite and how it coordinates with host rhythms. Blood-stage replication of malaria parasites is responsible for the severity of disease symptoms and fuels transmission; disrupting metabolite-sensing by parasites offers a novel intervention to reduce parasite fitness.


2020 ◽  
Vol 287 (1932) ◽  
pp. 20200347
Author(s):  
Aidan J. O'Donnell ◽  
Kimberley F. Prior ◽  
Sarah E. Reece

Circadian clocks coordinate organisms' activities with daily cycles in their environment. Parasites are subject to daily rhythms in the within-host environment, resulting from clock-control of host activities, including immune responses. Parasites also exhibit rhythms in their activities: the timing of within-host replication by malaria parasites is coordinated to host feeding rhythms. Precisely which host feeding-related rhythm(s) parasites align with and how this is achieved are unknown. Understanding rhythmic replication in malaria parasites matters because it underpins disease symptoms and fuels transmission investment. We test if rhythmicity in parasite replication is coordinated with the host's feeding-related rhythms and/or rhythms driven by the host's canonical circadian clock. We find that parasite rhythms coordinate with the time of day that hosts feed in both wild-type and clock-mutant hosts, whereas parasite rhythms become dampened in clock-mutant hosts that eat continuously. Our results hold whether infections are initiated with synchronous or with desynchronized parasites. We conclude that malaria parasite replication is coordinated to rhythmic host processes that are independent of the core-clock proteins PERIOD 1 and 2; most likely, a periodic nutrient made available when the host digests food. Thus, novel interventions could disrupt parasite rhythms to reduce their fitness, without interference by host clock-controlled homeostasis.


2019 ◽  
Author(s):  
Aidan J. O’Donnell ◽  
Kimberley F. Prior ◽  
Sarah E. Reece

SUMMARYCircadian clocks coordinate organisms’ activities with daily cycles in their environment. Parasites are subject to daily rhythms in the within-host environment, resulting from clock-control of host behaviours and physiologies, including immune responses. Parasites also exhibit rhythms in within-host activities; the timing of host feeding sets the timing of the within-host replication of malaria parasites. Why host feeding matters to parasites and how coordination with feeding is achieved are unknown. Determining whether parasites coordinate with clock-driven food-related rhythms of their hosts matters because rhythmic replication underpins disease symptoms and fuels transmission.We find that parasite rhythms became coordinated with the time of day that hosts feed in both wild type and clock-mutant mice, whereas parasite rhythmicity was lost in clock-mutant mice that fed continuously. These patterns occurred regardless of whether infections were initiated with synchronous or with desynchronised parasites.Malaria parasite rhythms are not driven by canonical clock-controlled host rhythms. Instead, we propose parasites coordinate with a temporally-restricted nutrient that becomes available through host digestion or are influenced by a separate clock-independent host process that directly responds to feeding. Thus, interventions could disrupt parasite rhythms to reduce their fitness, without interference by host clock-controlled-homeostasis.


2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 642 ◽  
Author(s):  
Hana Petroková ◽  
Josef Mašek ◽  
Milan Kuchař ◽  
Andrea Vítečková Wünschová ◽  
Jana Štikarová ◽  
...  

Development of tools for direct thrombus imaging represents a key step for diagnosis and treatment of stroke. Nanoliposomal carriers of contrast agents and thrombolytics can be functionalized to target blood thrombi by small protein binders with selectivity for fibrin domains uniquely formed on insoluble fibrin. We employed a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) of streptococcal protein G, and ribosome display, to identify variants recognizing fibrin cloth in human thrombus. We constructed a recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptide of the Bβ chain fused to TolA protein. Ribosome display selection followed by large-scale Enzyme-Linked ImmunoSorbent Assay (ELISA) screening provided four protein variants preferentially binding to insoluble form of human fibrin. The most specific binder variant D7 was further modified by C-terminal FLAG/His-Tag or double His-tag for the attachment onto the surface of nanoliposomes via metallochelating bond. D7-His-nanoliposomes were tested using in vitro flow model of coronary artery and their binding to fibrin fibers was demonstrated by confocal and electron microscopy. Thus, we present here the concept of fibrin-targeted binders as a platform for functionalization of nanoliposomes in the development of advanced imaging tools and future theranostics.


2017 ◽  
Author(s):  
Kimberley F. Prior ◽  
Daan R. van der Veen ◽  
Aidan J. O’Donnell ◽  
Katherine Cumnock ◽  
David Schneider ◽  
...  

AbstractCircadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience.Author summaryHow cycles of asexual replication by malaria parasites are coordinated to occur in synchrony with the circadian rhythms of the host is a long-standing mystery. We reveal that rhythms associated with the time-of-day that hosts feed are responsible for the timing of rhythms in parasite development. Specifically, we altered host feeding time to phase-shift peripheral rhythms, whilst leaving rhythms driven by the central circadian oscillator in the brain unchanged. We found that parasite developmental rhythms remained synchronous but changed their phase, by 12 hours, to follow the timing of host feeding. Furthermore, our results suggest that parasites themselves schedule rhythms in their replication to coordinate with rhythms in glucose in the host’s blood, rather than have rhythms imposed upon them by, for example, host immune responses. Our findings reveal a novel relationship between hosts and parasites that if disrupted, could reduce both the severity and transmission of malaria infection.


2022 ◽  
Author(s):  
Yasaman Karami ◽  
Samuel Murail ◽  
Julien Giribaldi ◽  
Benjamin Lefranc ◽  
Jerome Leprince ◽  
...  

Peptides have recently re-gained interest as therapeutic candidates but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity and preventing enzymatic degradation. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to head-to-tail peptide cyclization. Firstly we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation improving by over 1 A over pre-existing protocols. Secondly, and more importantly, we show that is is possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational peptide head-to-tail cyclization. As functional validation, we apply it to the design of a head-to-tail cyclized derivative of urotensin II, an 11-residue long peptide which exerts a broad array of biologic activities, making its cognate receptor a valuable and innovative therapeutic or diagnostic target. We propose a three amino acid candidate linker, leading to the first synthesized 14-residue long cyclic UII analogue with excellent retention of in vitro activity.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 845-851 ◽  
Author(s):  
Sigal Horowitz ◽  
Oded Yarden ◽  
Aida Zveibil ◽  
Stanley Freeman

Generation and screening for nonpathogenic mutants is a popular tool for identifying pathogenicity-related genes. Successful application of this technique for plant fungal pathosystems requires reliable and rapid screening procedures. This study reports on the development of a rapid in vitro bioassay enabling large-scale screening and isolation of nonpathogenic mutants of Colletotrichum gloeosporioides and C. acutatum on strawberry seedlings. Inoculation was carried out on strawberry seedlings at two different developmental stages: 12-week-old (young) and 15-week-old (older) seedlings. A comparison was made between two inoculation techniques, (i) foliar dip and (ii) root soak, at two incubation temperatures (19 and 25°C). Mortality of young seedlings was observed 4 days after inoculation with both species, reaching 50% within 10 days, using both techniques at 25°C. However, mortality of older seedlings was delayed by 4 days compared with that in the young seedlings when using the root-soak method. Disease development decreased in young and older seedlings at the lower temperature. This method also was reliable in determining pathogenicity of the cucurbit-specific C. magna that did not cause disease symptoms on strawberry by either inoculation method. The proposed method enabled screening of more than 980 restriction enzyme-mediated integration mutants resulting in a selection of five reduced-virulence isolates. Initial characterization of some of these mutants revealed large differences in germination and appressorial formation compared with pathogenic isolates.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


Sign in / Sign up

Export Citation Format

Share Document