scholarly journals Regulated deficit irrigation scheduling for maize cultivation in North-western areas of Bangladesh

2018 ◽  
Vol 12 (2) ◽  
pp. 53-63
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sisay Ambachew Mekonnen ◽  
Assefa Sintayehu

Sesame (Sesamum indicum L.) is the leading oil seed crop produced in Ethiopia. It is the second most important agricultural commodity for export market in the country. It is well suited as an alternative crop production system, and it has low crop water requirement with moderate resistance to soil moisture deficit. The low land of North Western Ethiopia is the major sesame producer in the country, and the entire production is from rainfed. The rainfall distribution in North Western Ethiopia is significantly varied. This significant rainfall variability hampers the productivity of sesame. Irrigation agriculture has the potential to stabilize crop production and mitigate the negative impacts of variable rainfall. This study was proposed to identify critical growth stages during which sesame is most vulnerable to soil moisture deficit and to evaluate the crop water productivity of sesame under deficit irrigation. The performance of sesame to stage-wise and uniform deficit irrigation scheduling technique was tested at Gondar Agricultural Research Center (Metema Station), Northern Western Ethiopia. Eight treatments, four stage-wise deficit, two uniform deficit, one above optimal, and one optimal irrigation applications, were evaluated during the 2017 irrigation season. The experiment was designed as a randomized complete block design with three replications. Plant phenological variables, grain yield and crop water productivity, were used for performance evaluation. The result showed that deficit irrigation can be applied both throughout and at selected growth stages except the midseason stage. Imposing deficit during the midseason gave the lowest yield indicating the severe effect of water deficit during flowering and capsule initiation stages. When deficit irrigation is induced throughout, a 25% uniform deficit irrigation can give the highest crop water productivity with no or little yield reduction as compared with optimal irrigation. Implementing deficit irrigation scheduling technique will be beneficial for sesame production. Imposing 75% deficit at the initial, development, late season growth stages or 25% deficit irrigation throughout whole seasons will improve sesame crop water productivity.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 669
Author(s):  
Leontina Lipan ◽  
Hanán Issa-Issa ◽  
Alfonso Moriana ◽  
Noemí Medina Zurita ◽  
Alejandro Galindo ◽  
...  

The tomato cultivated surface is one of the most important surfaces in the world. This crop needs a sufficient and continuous supply of water during vegetative growth. Therefore, production may be at risk in warm and water-scarce areas. Therefore, the implementation of irrigation alternatives such as regulated deficit irrigation (RDI) is of great importance to reduce the use of water and improve the production of the quality of tomatoes. The objective of this work was to evaluate the deficit irrigation scheduling using plant water status as a tool in deficit irrigation. Experimental design was a randomized design with four replications per treatment. Two irrigation treatments were applied: Control (125% of crop evapotranspiration (ETc)) and Regulated Deficit Irrigation (RDI). This latter treatment considered different threshold values of midday leaf water depending on crop phenological stage. No differences were observed in yield, with RDI treatment being more efficient in the use of irrigation water than the control. Besides, RDI tomatoes presented, in general, greater weight, size, Total soluble solids (TSS), sugars, antioxidant activity, lycopene, β-Carotene, and redder color with more intense tomatoes flavor. Finally, it might be said that RDI strategy helped to reduce 53% of irrigation water and to improve the nutritional, functional, and sensory quality of tomatoes.


1993 ◽  
Vol 118 (5) ◽  
pp. 580-586 ◽  
Author(s):  
J. Girona ◽  
M. Mata ◽  
D.A. Goldhamer ◽  
R.S. Johnson ◽  
T.M. DeJong

Seasonal patterns of soil water content and diurnal leaf water potential (LWP), stomatal conductance(gs), and net CO2 assimilation (A) were determined in a high-density peach [Prunus persica(L) Batsch cv. Cal Red] subjected to regulated deficit irrigation scheduling. The regulated deficit irrigation treatment caused clear differences in soil water content and predawn LWP relative to control irrigation treatments. Treatment differences in midday LWP, gs, and A were also significant, but not as distinct as differences in predawn LWP. Leaves on trees subject of the deficit irrigation treatment were photosynthetically more water-use-efficient during the latter part of the stress period than were the nonstressed trees. Midday LWP and gs, on trees that received the regulated deficit irrigation treatment did not recover to control treatment values until more than 3 weeks after full irrigation was resumed at the beginning of state III of fruit growth, because of water infiltration problems in the dry soil caused by the deficit irrigation. The regulated deficit irrigation treatment caused only a 8% reduction in trunk growth relative to the control, but resulted in a 40% savings in irrigation requirements.


2003 ◽  
Vol 128 (3) ◽  
pp. 432-440 ◽  
Author(s):  
Joan Girona ◽  
Mercè Mata ◽  
Amadeu Arbonès ◽  
Simó Alegre ◽  
Josep Rufat ◽  
...  

Productive and vegetative tree responses were analyzed during 3 consecutive years in peach [Prunus persica (L.) Batsch cv. Sudanell] plots subjected to three regulated deficit irrigation (RDI) strategies plus a control irrigation treatment. A postharvest RDI treatment (RDI-P) was irrigated at 0.35 of control after harvest. A Stage II RDI treatment (RDI-SII) was irrigated at 0.5 of control during the lag phase of the fruit growth curve. The third treatment (RDI-SII-P) applied RDI during Stage II at 0.5 of control and postharvest at 0.35 of control. The control treatment, like RDI-P and RDI-SII-P when not receiving RDI, was irrigated at 100% of a water budget irrigation scheduling in 1994 and 1996, full crop years, and 80% of the budget in 1995, an off year with a very small crop. A carry-over effect of deficit irrigation was highly significant in all parameters measured during the third year of the experiment. The general effect of water stress during Stage II did not affect return bloom and fruit set, whereas water stress during postharvest apparently reduced both parameters. As a consequence, fruit counts and fruit load manifested marked differences between treatments, which were also correlated to changes in fruit size. The RDI-II, which had the highest fruit yield, also had the smallest fruit size, whereas RDI-P manifested the lowest yield and largest fruit size. Vegetative growth (shoot elongation and trunk cross sectional area) was significantly reduced during the first 2 years of the experiment in accordance with the amount of the irrigation reduction. However, in 1996 growth was strongly governed by fruit load. The use of RDI-SII-P represented an intermediate cropping effect between the opposite bearing behavior of RDI-SII and RDI-P, while not expecting distinctive fruit yield or size reductions and offering remarkable water savings of 22% of the control applied water.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2061 ◽  
Author(s):  
Millán ◽  
Casadesús ◽  
Campillo ◽  
José Moñino ◽  
Henar Prieto

The growing scarcity and competition for water resources requires the urgent implementation of measures to ensure their rational use. Farmers need affordable irrigation tools that allow them to take advantage of scientific know-how to improve water use efficiency in their common irrigation practices. The aim of this study is to test under field conditions, and adjust where required, an automated irrigation system that allows the establishment of regulated deficit irrigation (RDI) strategies in a stone fruit orchard. For this, an automated device with an algorithm which combines water-balance-based irrigation scheduling with a feedback adjustment mechanism using 15 capacitive sensors for continuous soil moisture measurement was used. The tests were carried out in 2016 and 2017 in Vegas Bajas del Guadiana (Extremadura, Spain) on an experimental plot of ‘Red Beaut’, an early-maturing Japanese plum cultivar. Three irrigation treatments were established: control, RDI and automatic. The control treatment was scheduled to cover crop water needs, a postharvest deficit irrigation (40% crop evapotranspiration (ETc)) strategy was applied in the RDI treatment, while the Automatic treatment simulated the RDI but without human intervention. After two years of testing, the automated system was able to “simulate” the irrigation scheduling programmed by a human expert without the need for human intervention.


Sign in / Sign up

Export Citation Format

Share Document