scholarly journals Investigation of Mechanical Properties of Metal Inert Gas-Brazed TRIP800 Steel Joints Using Different Shielding Gas Flow Rate

2014 ◽  
Vol 125 (2) ◽  
pp. 473-474 ◽  
Author(s):  
N. Akkas ◽  
F. Varol ◽  
E. Ferik ◽  
E. Ilhan ◽  
U. Ozsarac ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1443 ◽  
Author(s):  
Maroš Vyskoč ◽  
Miroslav Sahul ◽  
Mária Dománková ◽  
Peter Jurči ◽  
Martin Sahul ◽  
...  

In this article, the effect of process parameters on the microstructure and mechanical properties of AW5083 aluminum alloy weld joints welded by a disk laser were studied. Butt welds were produced using 5087 (AlMg4.5MnZr) filler wire, with a diameter of 1.2 mm, and were protected from the ambient atmosphere by a mixture of argon and 30 vol.% of helium (Aluline He30). The widest weld joint (4.69 mm) and the highest tensile strength (309 MPa) were observed when a 30 L/min shielding gas flow rate was used. Conversely, the narrowest weld joint (4.15 mm) and the lowest tensile strength (160 MPa) were found when no shielding gas was used. The lowest average microhardness (55.4 HV0.1) was recorded when a 30 L/min shielding gas flow rate was used. The highest average microhardness (63.9 HV0.1) was observed when no shielding gas was used. In addition to the intermetallic compounds, β-Al3Mg2 and γ-Al12Mg17, in the inter-dendritic areas of the fusion zone (FZ), Al49Mg32, which has an irregular shape, was recorded. The application of the filler wire, which contains zirconium, resulted in grain refinement in the fusion zone. The protected weld joint was characterized by a ductile fracture in the base material (BM). A brittle fracture of the unshielded weld joint was caused by the presence of Al2O3 particles. The research results show that we achieved the optimal welding parameters, because no cracks and pores were present in the shielded weld metal (WM).


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Gilang Sigit Saputro ◽  
Triyono . ◽  
Nurul Muhayat

Tungsten Inert Gas welding of galvanized steel-aluminium useful for weight reduction, improve perform and reduce cost production. The effect of welding parameters, welding current and shielding gas flow rate on the intermetallic formation and hardness of dissimilar metals weld joint between galvanized steel and aluminium by using AA 5052 filler was determined. In this research, welding speed was consistent kept. The welding parameters were obtained by using welding currents of 70, 80 and 90 A, shielding gas flow rate of 10, 12 and 14 litre/min. The intermetallic layer thickness increased by welding currents of 70 A to 80 A, but then it dropped on 90 A. The higher of a shielding gas flow rate, the lower the thickness of the intermetallic layer. The higher of a welding current, the lower the hardness of weld. The higher of a shielding gas flow rate, the greater the hardness of weld. As a result,the maximum hardness by current variation of 70 A and a shielding gas flow rate of 14 Litre/min was 100.9 HVN.


2010 ◽  
Vol 81 (12) ◽  
pp. 1056-1063 ◽  
Author(s):  
M. Ek ◽  
L. Wu ◽  
P. Valentin ◽  
D. Sichen

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040059
Author(s):  
Qingxian Hu ◽  
Lei Zhang ◽  
Juan Pu ◽  
Caichen Zhu

A three-dimensional numerical model of arc in gas metal arc welding (GMAW) with single cable-typed wire was established based on the theory of arc physics. The influences of different shielding gas flow rates on the features of temperature field, velocity field and pressure field were investigated. The results showed that the maximum velocity of arc plasma along radial direction and the arc pressure on the surface of workpieces were increased obviously with the increase of the shielding gas flow rate, while the arc temperature was changed little. This phenomenon was mainly attributed to the increasing collisions between arc plasmas and the self-rotation action of cable-typed wires. The arc temperature at the tip of the cable-typed wire reached the maximum. The maximum flow velocity of arc plasma was located at the tip of wire (2–8 mm). The arc pressures in the central axis reached the maximum pressure. The simulation results were in agreement with the experimental results.


Author(s):  
Štěpán JEŽEK ◽  
Jakub HORVÁTH ◽  
Ladislav KOLAŘÍK ◽  
Jiří JANOVEC ◽  
Marie KOLAŔÍKOVÁ

2007 ◽  
Vol 56 (4) ◽  
pp. 2377
Author(s):  
Ma Guo-Jia ◽  
Liu Xi-Liang ◽  
Zhang Hua-Fang ◽  
Wu Hong-Chen ◽  
Peng Li-Ping ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Neeraj Sharma ◽  
◽  
Wathiq Sleam Abduallah ◽  
Manish Garg ◽  
Rahul Dev Gupta ◽  
...  

Tungsten Inert Gas welding is a fusion welding process having very wide industrial applicability. In the present study, an attempt has been made to optimize the input process variables (electrode diameter, shielding gas, gas flow rate, welding current, and groove angle) that affect the output responses, i.e., hardness and tensile strength at weld center of the weld metal SS202. The hardness is measured using Vicker hardness method; however, tensile strength is evaluated by performing tensile test on welded specimens. Taguchi based design of experiments was used for experimental planning, and the results were studied using analysis of variance. The results show that, for tensile strength of the welded specimens, welding current and electrode diameter are the two most significant factors with P values of 0.002 and 0.030 for mean analysis, whereas higher tensile strength was observed when the electrode diameter used was 1.5 mm, shielding gas used was helium, gas flow rate was 15 L/min, welding current was 240A, and a groove angle of 60o was used. Welding current was found to be the most significant factor with a P value of 0.009 leading to a change in hardness at weld region. The hardness at weld region tends to decrease significantly with the increase in welding current from 160-240A. The different shielding gases and groove angle do not show any significant effect on tensile strength and hardness at weld center. These response variables were evaluated at 95% confidence interval, and the confirmation test was performed on suggested optimal process variable. The obtained results were compared with estimated mean value, which were lying within ±5%.


1989 ◽  
Vol 162 (Part_1) ◽  
pp. 21-26 ◽  
Author(s):  
L'ubica Adamčíková ◽  
Peter Ševčík
Keyword(s):  
Gas Flow ◽  

Sign in / Sign up

Export Citation Format

Share Document