Application of Coercimeters for Equipment Diagnostics

NDT World ◽  
2015 ◽  
Vol 18 (4) ◽  
pp. 22-24
Author(s):  
Сивирюк ◽  
Vladimir Siviryuk ◽  
Безруков ◽  
Aleksey Bezrukov

Introduction. Changes of metal structure commonly result in equipment failures; early recognition of such changes is necessary in order to prevent emergency situations. Coercimetry is a simple and informative method for metal structure estimation. Method. The coercive force measurement method was used for estimation of the metal fatigue state. Results. The article presents the results of coercive force measurement application for the diagnosis of blast furnace jackets, overhead cranes, load-bearing elements of buildings and structures, pressure vessels, industrial pipelines, chimney stacks, ropes of hoisting devices. Manual testing of the equipment working under metallurgical production conditions is complicated; in hard-to-reach places and gas hazardous areas the stationary testing system has been used; the system has included permanently installed sensors connected to the switchboard. The equipment residual life has been determined by the coercive force maximum values with the use of nomograms. Conclusions. The coercive force measurement method for diagnostic survey of the equipment working under considerable thermal effect makes it possible to determine the metal stress state, predict zones of corrosion cracks formation and development, estimate the residual operation life, plan worn areas replacement/repair and as the final result – reduce unplanned and emergency shutdowns.

2019 ◽  
Vol 39 (4) ◽  
pp. 388-396 ◽  
Author(s):  
Peng Zhao ◽  
Yao Zhao ◽  
Jianfeng Zhang ◽  
Junye Huang ◽  
Neng Xia ◽  
...  

AbstractAn online and feasible clamping force measurement method is important in the injection molding process and equipment. Based on the sono-elasticity theory, anin situclamping force measurement method using ultrasonic technology is proposed in this paper. A mathematical model is established to describe the relationship between the ultrasonic propagation time, mold thickness, and clamping force. A series of experiments are performed to verify the proposed method. Experimental findings show that the measurement results of the proposed method agree well with those of the magnetic enclosed-type clamping force tester method, with difference squares less than 2 (MPa)2and errors bars less than 0.7 MPa. The ultrasonic method can be applied in molds of different thickness, injection molding machines of different clamping scales, and large-scale injection cycles. The proposed method offers advantages of being highly accurate, highly stable, simple, feasible, non-destructive, and low-cost, providing significant application prospects in the injection molding industry.


Author(s):  
Xuefeng Zhao ◽  
Kwang Ri ◽  
Yan Yu ◽  
Chunil Kang ◽  
Mingchu Li ◽  
...  

An accurate cable force measurement is one of very important practical problems during construction period as well as during service period of cable stayed bridge. In the recent years, with the advances in smartphone technologies, it is possible to rapidly evaluate structural health status and postevent damage using ubiquitous smartphones. In this paper, a novel vision-based cable force measurement method using smartphone camera is proposed for the first time, which enable to estimate cable force by recognizing cable vibration using smartphone camera, and then cable model test is carried out to verify the feasibility of the proposed method. The comparison test between the smartphone application Orion-CC measuring cable force from smartphone built-in accelerometer and the proposed method is conducted on a laboratory scale cable model with different sampling rates. In the proposed method, the vibration responses of cable are obtained by monitoring displacements of a preprinted black circular target attached on the cable model using smartphone camera. The test results showed satisfactory agreements between two methods in both frequency domain and cable force value, demonstrating the feasibility of the proposed cable force measurement method and its advantages such as convenience, ease of operation, and speediness.


2021 ◽  
Vol 887 ◽  
pp. 646-650
Author(s):  
O.A. Nasibullina ◽  
R.G. Rizvanov ◽  
E.Sh. Gaysin

It is possible to explain the phenomenon of fatigue destruction and the patterns that are observed only in the deep study of the processes taking place in the material under conditions of repeated-variable loading, i.e. in the development of the physical theory of metal fatigue. Despite the large number of work on this issue, there is currently no single interpretation of the process of fatigue destruction of metals, which is primarily due to the exceptional complexity of the problem. The purpose of the study is to study low-cycle corrosion fatigue of steel using the example of A 414 Grade A steel. The work solved problems, such as research of kinetics of crack development in conditions of low-cycle loading of metal structure made of carbon structural steel A 414 Grade A. Regression analysis has also been applied to predict a change in the thermodynamic stability of the metal during cyclic loading. Analysis of fatigue crack development at alternating loading cycle was carried out. The results of calculations based on the proposed model of elastoplastic deformation near the top of the crack at the sign-alternating loading cycle can be described by non-linear dependence. The regression analysis revealed that the correlation coefficient of the selected model is-0.93, which indicates a relatively strong relationship between the variables. In experimental way it has been proved that reduction of thermodynamic stability of metal in corrosive medium is connected with increase of number of loading cycles, which leads to accumulation of fatigue damages.


Author(s):  
Nigel R. McKie ◽  
Daniel T. Peters ◽  
Keegan A. Tooley

The majority of oilfield Wellhead and Tree equipment has been designed with guidance from codes API 6A and 17D. However, their design methods are not the most appropriate for the new High Pressure High Temperature (HPHT) applications; equipment rated above 15 ksi (103 MPa) Working Pressure and/or above 350 °F (177 °C). This paper discusses the limitations of established design methods and presents more suitable methods for HPHT applications. FEA is well established as a stress analysis method for use in conventional Pressure Vessel design; however it is not so well established for load bearing interfaces. This leaves a gap in our Design Methods, since load bearing interfaces are intrinsic to Wellhead Equipment Pressure Vessel design. Intrinsic because many of our Pressure Vessels are “capped” by hangers and connectors instead of flanges; if a hanger Load Shoulder fails then the Pressure Vessel above it has failed. Unique to the oilfield are infrequent but extremely high loads. These loads are much higher than the Working Condition and in most cases they stem from field testing and emergency situations. If the established ASME methods are used for these cases certain projects may not be viable.


Author(s):  
Corrado Delle Site ◽  
Emanuele Artenio ◽  
Gennaro Sepede ◽  
Matteo Chini ◽  
Francesco Giacobbe

Abstract Degradation of pressure equipment is becoming an important issue due to increasing asset service time in process and power plants across Europe. For this reason it is important to assess life consumption of these assets to avoid catastrophic failures. Therefore it is necessary to refer to national/international normative on this subject. At present time the Italian thermotechnical committee (CTI) has drawn up a comprehensive set of norms which help the user to set up an inspection plan to investigate and assess degradation of pressure vessels and boilers. In the first part of this paper creep damage of Steam Generators is analyzed. For this purpose results of INAIL (Istituto Nazionale per l’ Assicurazione contro gli Infortuni sul Lavoro) database of steam boilers with 100’000 service hours or more is illustrated. Critical components are identified with reference to materials, geometry and operating parameters (pressure, temperature and time). At the end of the design life cycle, components of pressure equipment operated in creep regime must subjected to specific checks to estimate their residual life and the suitability for further use in safety conditions. The procedure allows to define reinspection intervals keeping acceptable the risk associated with the further use of the component related to creep even in evidence of defects in progress. The first check must be performed after 100,000 hours of effective use. Then, residual life evaluations must be repeated according to period of time that are defined as function of the results of all the checks carried out. In the second part of this paper boiler degradation is discussed with reference to NDT results and in-field inspection campaigns which are carried out traditionally after 45 years of service time, to minimize the risk of pressure components failures. In this paper results of different case studies are discussed with reference to degradation mechanisms and applicable standards.


Author(s):  
Wen Hu ◽  
Shigang Wang ◽  
Chun Hu ◽  
Hongtao Liu ◽  
Jinqiu Mo

This article presents a new vision-based force measurement method to measure microassembly forces without directly computing the deformation. The shape descriptor of geometric moment invariants is used as a feature vector to describe the implicit relationship between an applied force and the deformation. Then, a standard library is established to map the corresponding relationship between the deformed cantilever under known forces and a set of feature vectors. Finally, a support vector machine compares the feature vector of deformed cantilever under an unknown force with those in the standard library, implements multi-class classification and predicts the unknown force. The vision-based force measurement method is validated for eight simulated microcantilevers of different sizes. Both regional and boundary moment invariants are used to constitute the feature vector. Simulated results show that the force measurement precision varies with length, width and height of cantilevers. If length increases and width and height decrease, the precision is higher. This trend can provide a reference for mechanism design of microcantilevers and microgrippers.


2011 ◽  
Vol 9 (10) ◽  
pp. 101201-101204 ◽  
Author(s):  
张斌 Guangzong Xiao ◽  
肖光宗 Xingwu Long ◽  
龙兴武 Bin Zhang ◽  
李耿 Geng Li

Sign in / Sign up

Export Citation Format

Share Document