scholarly journals MAGNETIC LIQUID IN HYDRODYNAMIC LUBRICATION MODE OF SPHERICAL SURFACES

2016 ◽  
Vol 2016 (3) ◽  
pp. 90-93 ◽  
Author(s):  
Али Албагачиев ◽  
Ali Albagachiev ◽  
Владимир Данилов ◽  
Vladimir Danilov

From the position of the hydrodynamic lubrication theory are considered the peculiarities of magnetoliquid lubrication in a point contact determined with a complicated character of the interaction of hydrodynamic and magnetic forces in a lubrication layer. The pressure distribution in a lubrication layer of magnetic liquid is considered as a superposition of the augend and addend pr and pm induced with hydrodynamic and magnetic forces. The contribution of the constituent pr is described by Reynolds equation in accordance with the classic hydrodynamic theory. At the saturation of magnetic liquid the constituent pm is presented as a function of the magnetic field strength, saturation magnetization of magnetic liquid and its viscosity and also velocity of rolling. As a result of the solution of a hydrodynamic problem through a numerical method there are defined conditions under which a lubrication layer loses its stability that is followed with the loss of carrying capacity in areas with negative pressure. The dependences of resistance to rolling forces, and sliding ones in a contact of spherical surfaces.

2009 ◽  
Vol 1157 ◽  
Author(s):  
Leonard John Borucki ◽  
Ting Sun ◽  
Yun Zhuang ◽  
David Slutz ◽  
Ara Philipossian

AbstractMaterial removal during CMP occurs by the activation of slurry particles at contact points between pad summits and the wafer. When slurry is present and the wafer is sliding, contacts become lubricated. We present an analysis valid over the full range from static contact to hydroplaning that indicates that CMP usually operates in boundary or mixed lubrication mode at contacts and that the lubrication layer is nanometers thick. The results suggest that the sliding solid contact area is mainly responsible for the friction coefficient while both the solid contact and lubricated areas control the removal rate.


1980 ◽  
Vol 102 (2) ◽  
pp. 172-179 ◽  
Author(s):  
C. M. McC. Ettles ◽  
M. Akkok ◽  
A. Cameron

The experiments of Mr. Beauchamp Tower and their subsequent interpretation by Professor Osborne Reynolds form the basis of all hydrodynamic lubrication theory. In the experiments described in his second report, Tower made nine pressure tappings in a 157 deg partial arc bearing. Reynolds assumed that the film shape corresponded to a circular bearing and analyzed the results on this assumption. Inverse hydrodynamic theory allows the calculation of the actual film shape from this measured pressure distribution. It is found that the film was a slightly convergent wedge which does not correspond to a fitted bearing as assumed by Tower and certainly not to the clearance bearing assumed by Reynolds. Existing methods of inverse hydrodynamic analysis require the second differential of the pressure profile (or its equivalent in the two-dimensional case) to become zero at some point in the film. The film thickness can be found directly at this point and then elsewhere by the solution of a cubic equation. Two separate and more general methods are developed in this paper in which this requirement for the second differential is unnecessary.


2021 ◽  
Author(s):  
Yujuan Li ◽  
Wen Wang ◽  
Mingfei Ma ◽  
Yongqiang Wang

2001 ◽  
Author(s):  
Andras Z. Szeri

Abstract Elastohydrodynamic lubrication (EHL) is the name given to hydrodynamic lubrication when it is applied to solid surfaces of low geometric conformity (counterformal contacts) that are capable of, and are subject to, elastic deformation. In bearings relying on EHL principles, the residence time of the fluid is less than 1 ms, the pressures are up to 4 GP, the film is thin, down to 0.1 μm, and shear rates are up to 108 s−1 — under such conditions lubricants exhibit material behavior that is distinctly different from their behavior in bulk at normal temperature and pressure. In fact, without taking into account the viscosity-pressure characteristics of the liquid lubricant and the elastic deformation of the bounding solids, hydrodynamic theory is unable to explain the existence of continuous lubricant films in highly loaded gears and rolling contact bearings.


1993 ◽  
Vol 157 ◽  
pp. 415-419
Author(s):  
D. Breitschwerdt ◽  
H.J. Völk ◽  
V. Ptuskin ◽  
V. Zirakashvili

It is argued that the description of the magnetic field in halos of galaxies should take into account its dynamical coupling to the other major components of the interstellar medium, namely thermal plasma and cosmic rays (CR's). It is then inevitable to have some loss of gas and CR's (galactic wind) provided that there exist some “open” magnetic field lines, facilitating their escape, and a sufficient level of self-generated waves which couple the particles to the gas. We discuss qualitatively the topology of the magnetic field in the halo and show how galactic rotation and magnetic forces can be included in such an outflow picture.


2018 ◽  
Vol 185 ◽  
pp. 09006
Author(s):  
Alexander Tyatyushkin

Small steady-state deformational oscillations of a drop of magnetic liquid in a nonstationary uniform magnetic field are theoretically investigated. The drop is suspended in another magnetic liquid immiscible with the former. The Reynolds number is so small that the inertia can be neglected. The variation of the magnetic field is so slow that the quasi-stationary approximation for the magnetic field and the quasi-steady approximation for the flow may be used.


Measurements have been made of the friction, electrical resistance, and electrical capacity between rotating steel cylinders with their axes mutually at right angles. The lubricant was a plain hydrocarbon mineral oil. Nominally the surfaces come together at a single point and the apparatus is designed to ensure that this condition is maintained even if the cylinders wear. It is shown that hydrodynamic lubrication exists over a wide range of conditions. At loads of a few kilograms it persists even when the speed falls below 1 cm/s and at higher speeds (~ 100 cm/s) it is maintained even when the load becomes large enough to cause bulk plastic flow of hardened steel. Hitherto it has been considered that only boundary lubrication could occur under these extreme conditions. At very light loads classical hydrodynamic theory applies but as the load is increased a departure from classical theory occurs because the viscosity of the oil increases under the applied pressure. At heavier loads the pressures become large enough to cause appreciable elastic deformation of the surfaces and a state of elasto-hydrodynamic lubrication is achieved. Under elasto-hydrodynamic conditions the film thickness can be deduced from the measure­ments of electrical capacity. A simplified theory of elasto-hydrodynamic lubrication at point contacts is developed, and the measured values of film thickness are in fairly good agreement with those derived from the theory. However, the variations of film thick­ness with viscosity, speed and radius of curvature forecast by the theory differ significantly from those obtained experimentally. The values of the film thickness range from 2 x 10 -6 cm to more than 1 x 10 -4 cm. The results, over the whole range, conform to a regular pattern and there is no evidence of any disturbing influence of the surface molecular fields, even with the thinnest films.


Sign in / Sign up

Export Citation Format

Share Document