scholarly journals Carbon deposition by Russian forests on the example of taiga and forest-steppe zones

2021 ◽  
Vol 32 (3) ◽  
pp. 1
Author(s):  
Vladimir Andreevich Usoltsev ◽  
Walery Zukow ◽  
Ivan Stepanovich Tsepordey
Author(s):  
В.А. Усольцев ◽  
В.Ф. Ковязин ◽  
И.С. Цепордей

В связи с глобальным потеплением климата оценка углеродного цикла в лесных экосистемах приобрела особое значение. Один из методов определения депонированного в лесах углерода основан на использовании конверсионных коэффициентов биомассы (ККБ) и данных Государственного учета лесного фонда (ГУЛФ). Путем объединения моделей ККБ с данными ГУЛФ в двух экорегионах России – таежном и лесостепном – было установлено, что за 20–25- летний период накопление органического углерода в таежной зоне значительно меньше (5%) по сравнению с лесостепной зоной (39%). Несмотря на существующие риски стихийных бедствий в лесостепном экотоне, за четверть века наблюдается значительный рост депонированного углерода. Это произошло вследствие высокой доли молодняков в начале анализируемого периода, обладающих повышенным приростом по отношению к спелым древостоям. Сопоставимые результаты были получены одним и тем же методом в разных экорегионах планеты: от 8% за 5 лет в Китае до 68% за 50 лет в Японии. Сравнение результатов, полученных предложенным методом и методом IIASA (Австрия), показало минимальное расхождение (3%), что дает основание считать полученные оценки депонирования углерода близкими к реальности. Однако сохраняется неопределенность, связанная с качеством данных ГУЛФ и депонированием углерода в почве. Due to the global warming of the climate, the assessment of the carbon cycle in forest ecosystems has become particularly important. One method for determining deposited carbon is based on the use of biomass expansion factors (BEF) and State Forest Inventory (SFI) data. By combining BEF models with SFI data in two ecoregions of Russia – taiga and forest-steppe – it was found that over a 20–25-year period, accumulating the carbon deposition in the taiga zone is significantly less (5%) compared to the forest-steppe zone (39%). Despite the existing risks of natural disasters in the forest-steppe ecotone, there is a significant increase in carbon deposition over a quarter of a century. This was due to the high proportion of young stands at the beginning of the analyzed period, which have increased growth in relation to old stands. Comparable results were obtained by the same method in different ecoregions of the planet (from 8% in 5 years in China to 68% in 50 years in Japan). A comparison of the results obtained by the proposed method and the IIASA (Austria) method showed a minimal discrepancy (3%), which gives reason to consider the above estimates of carbon deposition close to reality. However, uncertainties remain related to the quality of the SFI data and the carbon deposition in the soil.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


2020 ◽  
pp. 67-79
Author(s):  
Yu. Kravchenko

In Ukraine 57.5 % of agricultural land is subjected to erosion with 10–24 million tons of humus, 0.3–0.96 million tons of nitrogen, 0.7–0.9 million tons of phosphorus and 6–12 million tons of potassium lost annually. Degradation processes are also common on chernozems, which cover about 60 % of the Ukrainian territory. The aim of the research is to defi ne the most eff ective soil conservation practices and legislative decisions aimed to conservation/recovering the Ukrainian chernozem fertility. The experimental data of the agrochemical certifi cation of Ukrainian lands, data from scientifi c papers, stock and instructional materials as well as our own fi eld and laboratory studies were used. It has been established that the long-term use of deep subsurface tillage on typical chernozem increases, compared with plowing, the content of 10–0.25 mm of air-dry and water-resistant aggregates, the bulk density, soil water storages, water infi ltration rates, the content of mobile phosphorus and exchangeable potassium, pHH2O, CaCO3 stocks, the contents of humic and fulvic acids, molecular weights of humic acids – by 5.5 and 3.06 %; 0.05 g/cm3; 25.5 mm; 22.6 mm/h; 0.1 and 3 mg/100 g of soil; 0.03 pHH2O; 18 t/ha, 0.02 and 0.04 %, 91195 kDa, respectively. Fertilizers may contribute to the crop yields increase from by 60% in the Polissya, by 40 % – in the Forest Steppe, by 15 % – in the Wet Steppe, by 10 % – in the Dry Steppe and by 40 % – in the Irrigated Steppe areas. In soil-conservation rotations, the crop placement and alternation are advisable to combine with strips or hills sowing, taking into account the local relief features; soil alkalinization, applying anti-erosion structures. Ukrainian agriculture will receive additional 10–12 million tons of forage units or 20–22 % from all fodder in a fi eld agriculture under increasing 8–10 % of arable lands for intercrops. It is advisable to mulch the eroded chernozems of Ukraine depending on their texture composition: 1.3 t/ha of mulch for sandy and loamy soils, 1.9 t/ha – for sandy and 1.1 t/ha – for loamy soils. The implementation of soil conservation agriculture can minimize some soil degradation processes and improve eff ective soil properties required to realize the biological potential of cultivated plants. Key words: chernozem, degradation, fertility, soil conservation technologies, agriculture policy.


2020 ◽  
pp. 160-168
Author(s):  
I. Senyk

Botanical composition of grasses is one of the most important indicators the biological value and quality of the obtained hay and pasture forage, the longevity of hayfi elds and pastures depend on. The issue of changing the botanical composition of agrophytocenoses is especially important in the context of global climate change, which in recent decades is also manifested in the territory of Ukraine, as it is possible to establish the most adapted species of legumes and cereals to adverse weather conditions and to identify eff ective technological methods of managing these processes for maximum conservation economically valuable species in the herbage. The purpose of the research is to establish the infl uence of diff erent ways of sowing of clover and alfalfa cereal crops agrophytocenoses on the formation of their botanical composition. Field studies have established diff erent eff ects of conventional in-line, cross-section and cross-sectional methods of sowing on the formation of botanical composition of grass mixtures of clover meadow (Trifolium pratense) varieties Sparta and Pavlyna with timothy meadow (Phleum pratense) and fenugreek multifl oral (Lolium multifl orum) and of agrophytocenoses of alfalfa of Sinyukha and Seraphima sowing varieties with reed fire (Festuca arundinacea Schreb) and middle wheatgrass (Elytrigia intermedia). For the average of four years of life of clover and alfalfa cereal crops agrophytocenoses, the highest proportion of legume component was observed with split-cross sowing – 51.6 % for Sparta, 53.1 % for Pavlyna, 60.3 % for Seraphima and 61.6 % for the Sinyukha variety. In the fourth year of life (the third year of use) of sowed leguminous-cereals agrophytocenoses, the preservation of the legume component was 14.6–15.5 % in clover-cereals grass mixtures with the Sparta variety and 16.0–16.8 % with the Pavlyna variety. In alfalfa grasslands, these indicators were 54.0–55.1 % with Seraphim and 55.0–56.2 % with Sinyukha. Among the studied varieties of clover meadow and alfalfa sowing proved better in the conditions of the Forest Steppe of western Pavlyna and Sinyukha. Cross-sectional and divided cross-sectional sowing of legumes and cereals mixtures proved to be better compared to conventional row crops in terms of conservation of economically valuable grass species. Key words: agrophytocenosis, botanical composition, clover meadow, alfalfa sowing, sowing methods.


Sign in / Sign up

Export Citation Format

Share Document