COMPUTATIONAL DESCRIPTION OF THE GEOMETRY OF ALIGNED CARBON NANOTUBES IN POLYMER NANOCOMPOSITES

2021 ◽  
Author(s):  
STEPAN V. LOMOV ◽  
JEONYOON LEEJEONYOON LEE ◽  
BRIAN L. WARDLE ◽  
NIKITA A. GUDKOV ◽  
ISKANDER S. AKHATOV ◽  
...  

The paper considers nanocomposites, reinforced with aligned carbon nanotubes (A- CNTs). Nominally aligned, the CNTs in the forest are wavy, which has important consequences in downgraded mechanical properties, and influences electric and thermal performance. The most detailed geometrical model of A-CNTs was proposed by Stein and Wardle (Nanotechnology, 27:035701, 2015). It creates a centerline trajectory of a CNT in steps, each step defining a section of the CNT, growing in the alignment direction with certain deviations. The paper, starting from this framework, formulates a model of the CNT geometry, which is based on the concept of correlation length of the CNT waviness and maximum admissible CNT curvature and torsion. The value of the maximum curvature can be linked to the buckling criteria for CNTs, or derived from ab initio and finite element modelling. It is used as a limiting factor for the growth, defining the waviness and tortuosity of the CNTs. The CNTs in the forest are placed in a random non-regular way, using Voronoi tessellation. The full paper includes investigation of the proposed algorithm for several values of the CNT volume fraction (in the range 0.5%…8%), the dependency of the modelled geometry on the curvature, and the apparent twist of the CNT centerlines. The modelling results are compared with experimental observations in 3D TEM imaging.

2018 ◽  
Vol 30 (3) ◽  
pp. 463-478 ◽  
Author(s):  
MK Hassanzadeh-Aghdam ◽  
MJ Mahmoodi ◽  
R Ansari ◽  
A Darvizeh

The effects of interphase characteristics on the elastic behavior of randomly dispersed carbon nanotube–reinforced shape memory polymer nanocomposites are investigated using a three-dimensional unit cell–based micromechanical method. The interphase region is formed due to non-bonded van der Waals interaction between a carbon nanotube and a shape memory polymer. The influences of temperature, diameter, volume fraction, and arrangement type of carbon nanotubes within the matrix as well as two interphase factors, including adhesion exponent and thickness on the carbon nanotube/shape memory polymer nanocomposite’s longitudinal and transverse elastic moduli, are explored extensively. Moreover, the results are presented for the shape memory polymer nanocomposites containing randomly oriented carbon nanotubes. The obtained results clearly demonstrate that the interphase region plays a crucial role in the modeling of the carbon nanotube/shape memory polymer nanocomposite’s elastic moduli. It is observed that the nanocomposite’s elastic moduli remarkably increase with increasing interphase thickness or decreasing adhesion exponent. It is found that when the interphase is considered in the micromechanical simulation, the shape memory polymer nanocomposite’s elastic moduli non-linearly increase as the carbon nanotube diameter decreases. The predictions of the present micromechanical model are compared with those of other analytical methods and available experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yan He ◽  
Zhifang Cao ◽  
Lianxiang Ma

A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i) the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii) the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.


2017 ◽  
Vol 51 (20) ◽  
pp. 2899-2912 ◽  
Author(s):  
MK Hassanzadeh-Aghdam ◽  
R Ansari ◽  
A Darvizeh

A comprehensive investigation is carried out into the elastic behavior of carbon nanotube-reinforced polymer nanocomposites using two combined analytical micromechanical methods. A unit cell-based micromechanical method is developed to model the random distribution of carbon nanotubes within the polymer matrix. Also, the Eshelby method is used for modeling the random orientation state of carbon nanotubes within the matrix. Two fundamental aspects affecting the mechanical behavior of carbon nanotube/polymer nanocomposites, including the carbon nanotube waviness and the interphase formed due to the non-boned interaction between the carbon nanotube and the surrounding polymer, are considered in the unit cell method. Comparisons between the results of present method and experimental data reveal that for more realistic predictions, five important factors including, random orientation and random distribution of carbon nanotubes, interphase, waviness and transversely isotropic behavior of carbon nanotube should be considered in the modeling of carbon nanotube-reinforced polymer nanocomposites. The effects of volume fraction, number of waves and waviness factor of carbon nanotube as well as the type of random distribution of CNTs within the matrix on the elastic modulus of the polymer nanocomposites are studied.


2010 ◽  
Vol 70 (13) ◽  
pp. 1980-1985 ◽  
Author(s):  
Philip D. Bradford ◽  
Xin Wang ◽  
Haibo Zhao ◽  
Jon-Paul Maria ◽  
Quanxi Jia ◽  
...  

Author(s):  
H. Sh. Hammood ◽  
S. S. Irhayyim ◽  
A. Y. Awad ◽  
H. A. Abdulhadi

Multiwall Carbon nanotubes (MWCNTs) are frequently attractive due to their novel physical and chemical characteristics, as well as their larger aspect ratio and higher conductivity. Therefore, MWCNTs can allow tremendous possibilities for the improvement of the necessarily unique composite materials system. The present work deals with the fabrication of Cu-Fe/CNTs hybrid composites manufactured by powder metallurgy techniques. Copper powder with 10 vol. % of iron powder and different volume fractions of Multi-Wall Carbon Nanotubes (MWCNTs) were mixed to get hybrid composites. The hybrid composites were fabricated by adding 0.3, 0.6, 0.9, and 1.2 vol.% of MWCNTs to Cu- 10% Fe mixture using a mechanical mixer. The samples were compressed under a load of 700 MPa using a hydraulic press to compact the samples. Sintering was done at 900°C for 2 h at 5ºC/min heating rate. The microscopic structure was studied using a Scanning Electron Microscope (SEM). The effect of CNTs on the mechanical and wear properties, such as micro-hardness, dry sliding wear, density, and porosity were studied in detail. The wear tests were carried out at a fixed time of 20 minutes while the applied loads were varied (5, 10, 15, and 20 N). SEM images revealed that CNTs were uniformly distributed with relative agglomeration within the Cu/Fe matrix. The results showed that the hardness, density, and wear rates decreased while the percentage of porosity increased with increasing the CNT volume fraction. Furthermore, the wear rate for all the CNTs contents increased with the applied load.


2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


Sign in / Sign up

Export Citation Format

Share Document